ZB# 03-52

Cellular One

29-1-27.51

535 TOLEMAN RD. (CHAZEN) (29-1-27.51)

ZONING BOARD OF APPEALS TOWN OF NEW WINDSOR 555 UNION AVENUE NEW WINDSOR, N.Y. 12553 Stanted 11-10-03

OFFICE OF THE PLANNING BOARD **TOWN OF NEW WINDSOR ORANGE COUNTY, NY**

NOTICE OF DISAPPROVAL OF PLANNING BOARD APPLICATION

PLANNING BOARD FILE NUMBER: 03-29

DATE: 10-15-03

APPLICANT:

CELLULAR ONE - C/O KEVIN BRENNAN 1351 RT. 55 LA GRANGEVILLE, NY 12540

PLEASE TAKE NOTICE THAT YOUR APPLICATION:

DATED: 9/17/03

FOR: SITE PLAN

LOCATED AT: WEST SIDE OF TOLEMAN ROAD - TOWN OF NEW WINDSOR

ZONE: R-1

DESCRIPTION OF EXISTING SITE: SEC: 29 BLOCK: 1 LOT: 27.51

IS DISAPPROVED ON THE FOLLOWING GROUNDS:

INTERPRETATION AND/OR VARIANCE NEEDED REGARDING TELECOMMUNICATIONS FACILITIES TO BE LOCATED ON EXISTING RADIO TOWER IN AN R-1 ZONE.

TOWN OF NEW WINDSOR CODE: 48-21 M AND 48-24 B (3)

MICHAEL BABCOCK,

BUILDING INSPECTOR

M. Telecommunications towers. [Added 4-7-1999 by L.L. No. 2-1999]

- (1) Purpose. The purpose of these supplemental regulations is to promote the health, safety and general welfare of the residents of the Town of New Windsor; to provide standards for the safe provision of telecommunications consistent with applicable federal and state regulations; to minimize the total number of telecommunications towers in the community by encouraging shared use of existing and future towers, and the use of existing tall buildings and other high structures; and to minimize adverse visual effects from telecommunications towers by requiring careful siting, visual impact assessment and appropriate landscaping.
- (2) Definitions. As used in this chapter, the following terms shall have the meanings indicated:
 - TELECOMMUNICATIONS TOWER -- Any structure the total height of which, including underlying or support structures and buildings, is greater than 35 feet in height, which is capable of receiving or transmitting signals for the purpose of communications.
- (3) Application of special permit regulations.
 - (a) No telecommunications tower, except those towers and uses approved prior to the effective date of this section, shall be used unless it has received a special permit from the Planning Board. No telecommunications tower shall hereafter be erected, moved, reconstructed, changed or altered unless in conformity with these regulations. No existing structure shall be modified to serve as a telecommunications tower unless in conformity with these regulations.
 - (b) Applicants proposing to collocate on a previously approved telecommunications tower do not require a special permit. They are, however, subject to site plan review by the Planning Board in accordance with § 48-19.
 - (c) These regulations shall apply to all property within the following zones: AP, PI, OLI, C and NC. Telecommunications towers shall be specifically excluded from all other zones.
 - (d) Applications for construction of new telecommunications towers shall comply with the Code of Federal Regulations pertaining to objects affecting navigable airspace as delineated within Federal Aviation Regulations (FAR), Part 77. Additionally, no application for construction of a new telecommunications tower will be approved if the proposed tower violated the criteria for obstructions to air navigation as established by FAR Part 77, Subpart C Obstruction Standards.
- (4) Shared use of existing tall structures. At all times, shared use of existing tall structures (for example municipal water towers, multistory buildings, church steeples and farm silos) and existing or approved towers shall be preferred to the construction of new towers.
 - (a) An applicant proposing to share use of an existing tall structure shall be required to submit:

- [1] A completed application for a special permit.
- [2] Documentation of intent from the owner of the existing facility to allow shared use.
- [3] A site plan. The site plan shall show, at a minimum, all existing and proposed structures and improvements, including antennas, roads, buildings, guy wires and anchors, parking and landscaping, and shall include grading plans for new facilities and roads. Any modifications of the existing facility shall be indicated on the site plan.
- [4] An engineer's report certifying that the proposed shared use will not diminish the structural integrity and safety of the existing tall structure and explaining what modifications, if any, will be required in order to certify to the above, including making the facility higher.
- [5] A completed long environmental assessment form (EAF) and completed visual EAF addendum.
- [6] A copy of its Federal Communications Commission (FCC) license.
- (b) If an applicant proposing to share use of an existing tall structure submits complete and satisfactory documentation in accordance with Subsection M(4)(a)[1] through [6] above, and if modifications indicated according to those subsections are deemed insignificant by the Planning Board, and after the Planning Board conducts a public hearing and complies with all State Environmental Quality Review Act (SEQRA) provisions, the Board shall grant a special permit without further review under this section. If the Board determines that any modifications indicated according to such subsections are significant, it may require further review according to all subsections below.
- (c) The Planning Board may modify or waive the setback or lot area requirements in the event that they are not deemed necessary for safety or other valid planning purposes for the site.
- (5) New telecommunications towers. The Planning Board may consider a new telecommunications tower when the applicant demonstrates that shared use of existing tall structures and existing or approved towers is impractical. An applicant shall be required to present an adequate report inventorying all existing tall structures above 35 feet and existing or approved towers within a two-mile distance of the proposed site. The report shall demonstrate the need for the proposed facility and provide technical data regarding existing signal coverage. The report shall outline opportunities for shared use of these existing facilities as an alternative to a proposed new tower and shall show reasons why existing towers and structures are not usable. The report shall demonstrate good-faith efforts to secure shared use from the owner of each existing tall structure and existing or approved tower as well as documentation of the physical, technical and financial reasons why shared usage is not practical in each case. Written requests and responses for shared use shall be provided.
- (6) Shared usage of existing tower sites for placement of new towers. Where shared use of existing tall structures and existing or approved towers is found to be impractical, the

applicant shall investigate shared usage of an existing tower site for its ability to accommodate a new tower and accessory uses. Any proposals for a new telecommunications tower on an existing tower site shall be subject to the requirements below.

- (7) New towers at new locations. The Planning Board may consider a new telecommunications tower on a site not previously developed with an existing tower, when the applicant demonstrates that shared use of existing tall structures and existing or approved towers is impractical or that no existing facility could be modified or altered to be usable, and when the Board determines that shared use of an existing tower site for a new tower is undesirable. Any proposal for a new telecommunication tower shall be subject to the requirements of the subsections below.
- (8) Future shared use of new towers. The applicant shall design a proposed new telecommunications tower to accommodate future demand for reception and transmitting facilities. The applicant shall submit to the Board a letter of intent committing the owner of the proposed new tower, and successors in interest, to negotiate in good faith for shared use of the proposed tower by a reasonable number of other telecommunications providers in the future. This letter shall be filed with the Building Inspector prior to issuance of a building permit. Failure to abide by the conditions outlined in the letter may be grounds for relocation of the special permit. The letter shall commit the new tower owner and successors in interest to:
 - (a) Respond within 90 days to a request for information from a potential shared-use applicant.
 - (b) Negotiate in good faith concerning future requests for shared use of the new tower by other telecommunications providers.
 - (c) Allow shared use of the new tower if another telecommunications provider agrees in writing to pay charges. The charge may include but is not limited to a pro rata share of the cost of site selection, planning, project administration, land costs, site design, construction and maintenance financing, return on equity and depreciation and all of the costs of adapting the tower or equipment to accommodate a shared user without causing electromagnetic interference.
- (9) Site plan review; submission requirements.
 - (a) An applicant shall be required to submit a site plan in accordance with § 48-19. The site plan shall show all existing and proposed structures and improvements, including but not limited to roads, buildings, tower(s), guy wires and anchors, antennas, parking and landscaping, and shall include grading plans for new facilities and roads.
 - (b) Supporting documentation. The applicant shall submit a complete long EAF, a complete visual environmental assessment form and documentation on the proposed intent and capacity of use as well as a justification for the height of any tower and justification for any clearing required.
- (10) Lot size and setbacks. All proposed telecommunication towers and accessory structures shall be located on a single parcel and shall be set back from abutting parcels and street

lines a distance sufficient to substantially contain on site all ice-fall or debris from tower failure and preserve the privacy of any adjoining residential properties.

- (a) Lot size of parcels containing a tower shall be determined by the amount of land required to meet the setback requirements. If the land is to be leased the entire area required shall be leased from a single parcel unless the Planning Board determines that this provision may be modified or waived as part of the special permit.
- (b) Telecommunications towers shall be located with a minimum setback from any property line equal to 1/2 of the height of the tower. Equipment or utility structures shall comply with the minimum setback requirements in the underlying zoning district.
- (11) Visual impact assessment. The Board shall require the applicant to undertake a visual impact assessment which shall include, as a minimum:
 - (a) A Zone of Visibility Map shall be provided in order to determine locations where the tower may be seen.
 - (b) Pictorial representations of "before" and "after" views from key viewpoints both inside and outside of the town, including but not limited to state highways and other major roads, state and local parks, other public lands, preserves and historic sites normally open to the public, and from any other location where the site is visible to a large number of visitors or travelers. The board shall determine the appropriate key sites at a regular meeting or work session conference with the applicant.
 - (c) Assessment of alternative tower designs and color schemes.
 - (d) Assessment of the visual impact of the tower, guy wires, accessory buildings and overhead utility lines from abutting properties and streets. For new towers the Planning Board may require testing via balloons or cranes or other devices, with photographs submitted to the Board.
- (12) New tower design. Alternative designs shall be considered for new towers, including lattice and single pole structures. The design of a proposed new tower shall comply with the following:
 - (a) Any new tower shall be designed to accommodate future shared use by other telecommunications providers to the extent practicable.
 - (b) A tower shall have a shape, contour and finish (either painted or unpainted) that minimizes its degree of visual impact. The Planning Board may require a tower to be in the shape of a tree, flagpole, church steeple, etc.
 - (c) The maximum height of any new tower shall not exceed that which shall permit operation without artificial lighting of any kind or nature, in accordance with municipal, state and/or federal law and/or regulation. The Board at its discretion may modify this requirement if the applicant can justify the need to exceed this height limitation.
 - (d) The Board may request a review of the application by a qualified professional engineer or landscape architect retained by the Planning Board in order to evaluate

- the need for, and the design of, any new tower. The reasonable cost of this review shall be borne by the applicant.
- (e) All structures shall maximize the use of building materials, colors and textures designed to blend with the natural surroundings.
- (f) No portion of any tower or structure shall be used for a sign or other advertising purpose, including but not limited to company name, phone numbers, banners and streamers.
- (13) Existing vegetation. Existing on-site vegetation shall be preserved to the maximum extent possible. No cutting of trees exceeding four inches in diameter (measured at the height of four feet off the ground), shall take place prior to the approval of the special permit. The applicant shall also comply with § 48-19C.
- (14) Screening. Deciduous or evergreen tree plantings shall be required to screen portions of the tower and all structures from nearby residential property as well as from public sites known to include public sites and views. Where a site abuts a residential property or public property, including streets, ample screening shall be required.
- (15) Access. Adequate emergency and service access and maneuver area shall be provided, including access for a tower ladder fire truck. Maximum use of existing roads and private accessways shall be made. Road construction shall, at all times, minimize ground disturbance and vegetation cutting to within the toe of fill, the top of cuts, or no more than 10 feet beyond the edge of any pavement. Road grades shall closely follow natural contours to assure minimal visual disturbance and reduce soil erosion potential. An erosion control plan shall be submitted to and approved by the Planning Board prior to any construction.
- (16) Parking. Parking shall be provided to assure adequate emergency and service access in accordance with the Zoning Code.
- (17) Fencing. The tower and all structures shall be adequately enclosed by a fence, the design of which shall be approved by the Planning Board. The minimum standard shall be a chain-link fence six feet or eight feet in height, with dark vinyl coating and privacy slats, as well as suitable gate access for emergency purposes.
- (18) Public safety. The applicant shall demonstrate that the proposed communications tower will not pose a threat to public health and safety as a result of falling or blowing ice and other debris and that public access to the same has been restricted in order to prevent climbing or other trespass on the structure itself.
- (19) Removal. In the event that a tower is not in use for a period of one year, the tower and all structures shall be removed and the site restored to its condition prior to the construction of the related facilities. In the event that the tower is not removed as required by this section, then, upon written notice to the applicant securing the approval from the Planning Board for the special permit for the erection of the public communications utility tower and to the owner, which shall be mailed by certified mail to the applicants address on the application filed with the Planning Board or to such other address as the applicant may provide to the Planning Board from time-to-time, and also to the owner at the address of record in the Assessor's office, the applicant shall

remove the tower and related facilities and restore the premises. In the event that the applicant fails to remove the tower following notice and demand that the applicant do so, the town shall then have the right to proceed to secure such relief against the applicant to cause the removal and restoration as the town may deem appropriate, including injunctive relief. Where appropriate, the town may elect to proceed under the Town Unsafe Buildings or Collapsed Structures Local Law. EN(1) In either event, all costs and expense incurred by the Town of New Windsor in connection with the proceedings to remove or secure, including the cost of actually removing the tower, shall be assessed against the land on which the tower is located.

- (20) Intermunicipal notification for new towers. In order to keep neighboring municipalities informed, and to facilitate the possibility of directing that an existing tall structure or existing telecommunications tower in a neighboring municipality be considered for shared use, and to assist in the continued development of county 911 services, the Board shall require that an applicant who proposes a new telecommunication tower shall notify, in writing, the legislative body of each municipality that borders the Town of New Windsor, the Orange County Planning Department and the Director of Orange County Emergency Services. Notification shall include the exact location of the proposed tower and a general description of the project, including but not limited to, the height of the tower and its capacity for future shared use. Documentation of this notification shall be submitted to the Board at the time of application.
- (21) Notification of nearby landowners. The applicant shall be required to mail notice of the public hearing directly to all landowners whose property is located within 500 feet of the property line of the parcel on which a new tower is proposed. Notice shall also be mailed to the administrator of the state or federal parklands from which the proposed tower would be visible if constructed. Notification, in all cases, shall be made by first-class mail in accordance with Planning Board procedures. Documentation of this notification shall be submitted to, the Board prior to the public hearing.

Endnotes

1 (Popup) Editor's Note: See Ch. 42, Unsafe Buildings or Collapsed Structures.

§ 48-24. Nonconforming uses.

- A. A nonconforming use is any use, whether of a building or tract of land or both, existing on the effective date of this local law which does not conform to the use regulations of the district in which it is located.
- B. The following provisions shall apply to all nonresidence uses existing on the effective date of this local law which do not conform to the requirements set forth in this local law and to uses that become nonconforming by reason of any subsequent amendment to this local law.
 - (1) Nonconforming uses (nonresidence). Any nonconforming uses of buildings or open land, except those specified in § 48-26 herein, may be continued indefinitely, but:
 - (a) Shall not be changed to another nonconforming use without a special permit from the Planning Board, and then only to a use which, in the opinion of said Board, is of the same or a more restricted nature. [Amended 11-20-1996 by L.L. No. 7-1996]
 - (b) Shall not be reestablished if such use has been discontinued for any reason for a period of two years or more, or has been changed to or replaced by a conforming use. Intent to resume a nonconforming use shall not confer the right to do so.
 - (2) Except as provided in § 48-24B(3) below, no building which houses a nonconforming use shall be:
 - (a) Moved to another location where such use would be nonconforming.
 - (b) Restored for other than a conforming use after damage, from any cause, of 100% of the replacement cost of such building, exclusive of foundations. Any such damaged building may be restored, but not enlarged, if application for a building permit is made within six months and the nonconforming use is reinstated within one year of such damage. If the restoration of such building is not completed within the provisions of § 48-28I, the nonconforming use of such building shall be deemed to have been discontinued, unless such nonconforming use is carried on without interruption in the undamaged portion of such building.
 - (3) Extensions or remodeling of structures used for nonconforming uses. Notwithstanding any other provision of this local law, a structure devoted to such nonconforming use may be extended to an extent not exceeding 30% of its ground floor area existing at the time of the enactment of this local law or any amendment thereto, and provided further that the Board of Appeals shall find that:
 - (a) Practical difficulties prevail in operating the premises or structures in the presently existing nonconforming manner and that the proposed extension or remodeling would constitute reasonable adjustment of the existing nonconforming use or remodeling will reduce the nonconforming use.
 - (b) The proposed extension will not have a deleterious effect on the neighborhood of the existing nonconforming use. In determining deleterious effect, the Planning Board shall take into consideration, among other things, traffic safety, nuisance characteristics, manner of operation, total ground area covered by the structure and

the appearance and condition of the premises. [Amended 11-20-1996 by L.L. No. 7-1996]

- (c) The proposed extension or remodeling will not be more incompatible with or adversely alter the model and character of the neighborhood and neighborhood structures, nor prejudice the value of adjoining properties.
- (d) Adequate or on-site parking and loading space will be provided for all potential users.
- (e) The proposed extension or remodeling will not unduly restrict fire and police protection of the premises and of surrounding properties.

90 MAPLE AVENUE WHITE PLAINS, NEW YORK 10601-5196

(914) 761-1300 FACSIMILE (914) 761-5372/6405 www.cuddyfeder.com

> 500 FIFTH AVENUE NEW YORK, NEW YORK 10110 (212) 944-2841 FACSIMILE (212) 944-2843

> WESTAGE BUSINESS CENTER 300 SOUTH LAKE DRIVE FISHKILL, NEW YORK 12524 (845) 896-2229 FACSIMILE (845) 896-3672

NORWALK, CONNECTICUT

October 20, 2003

WILLIAM V. CUDDY 1971-2000

WILLIAM S. NULL
DAWN M. PORTNEY
ELISABETH N. RADOW
NEIL T. RIMSKY
RUTH E. ROTH
JONATHAN S. SAUL (also N.I)
JENNIFER L. VAN TUYL
CHAUNCEY L. WALKER (also CA)

Of Counsel ANDREW A. GLICKSCN (also CT) ROBERT L. OSAR (also TX) MARYANN M. PALERMO ROBERT C. SCHNEIDER

By Federal Express & Fax (845) 563-4695

Chairman Lawrence Torley and Members of the Zoning Board of Appeals Town of New Windsor 555 Union Avenue New Windsor, New York 12553

Re: Cellular One (PA2003-1036)

NEIL J. ALEXANDER (also CT)

THOMAS R. BEIRNE (also DC)
THOMAS M. BLOOMER

LUCIA CHIOCCHIO (also CT)

CHRISTOPHER B. FISHER (also CT)

ANTHONY B. GIOFFRE III (also CT) SUSAN E.H. GORDON

JOSEPH P. CARLUCCI

KENNETH J. DUBROFF

ROBERT DISIENA

ROBERT FEDER

KAREN G. GRANIK

BARRY E. LONG

JOSHUA J. GRAUER KENNETH F. JURIST

MICHAEL L. KATZ (also NJ) JOSHUA E. KIMERLING (also CT) DANIEL F. LEARY (also CT)

> Shared Use of an Existing Tall Structure (Wireless Facility) Request for a Zoning Interpretation/Use Variance Application Premises: 535 Toleman Road, Town of New Windsor

Tax Id.: Section 29, Block 1, Lot 27.51

Dear Chairman Torley and Members of the Zoning Board of Appeals:

This letter is respectfully submitted on behalf of Cellular One in furtherance of the above-referenced application.

As the Zoning Board of Appeals may be aware, Cellular One has entered into a lease agreement with Sunset Crest Realty Corp./WGNY c/o Robert Maines in order to develop a wireless facility on a parcel of property located at 535 Toleman Road in the Town of New Windsor (the "Premises"). At present, the Premises is improved with an approximately 300 square foot "L"-shaped building, and a fenced compound surrounding an approximately 224 foot tall, guy-wired, radio transmissions tower on which WGNY and other communications companies have mounted their antennas.

The Contextual Background

On August 15, 2003, Cellular One filed an application for a building permit to mount 9 panel antennas at the 173 foot above grade level ("AGL") on the existing 224 foot tall WGNY radio transmission tower, and to place an associated unmanned 20 foot long by 12 foot wide equipment building at the base this tower. The dimensions for each panel antenna are approximately 48 inches in length, 6.5 inches in width and 8 inches in depth. The limited purpose of the equipment shelter is the housing of the computer and electrical equipment cabinets necessary to the wireless facility.

Chairman Torley and Members of the Zoning Board of Appeals October 20, 2003 Page 2

By letter dated August 18, 2003, Building Inspector Michael Babcock advised that Cellular One's application required approval from the Town of New Windsor Planning Board.

On September 3, 2003, the Town of New Windsor Planning Board held a work-session in order to discuss Cellular One's application. As a result of that meeting, Cellular One submitted the requested application materials on September 12, 2003 and September 18, 2003.

At the Town of New Windsor Planning Board's October 8, 2003 meeting, the Planning Board Engineer recommended in his October 8, 2003 memorandum that Cellular One "be referred to the Zoning Board of Appeals for an interpretation and/or variance . . ." because it was unclear as to whether Cellular One's development of a wireless facility at the Premises was a permitted use in the R-1 zoning district.

On October 15, 2003, Cellular One attended another Planning Board workshop during which it set forth why its proposed wireless facility for the Premises constitutes the shared use of an existing tall structure, which is a permitted use by special permit in all zoning districts.

That afternoon, Building Inspector Michael Babcock issued a determination relative to Cellular One's pending shared use special permit application that an "interpretation and/or variance [is] needed regarding telecommunications facilities to be located on existing radio tower in an R-1 zone."

The Instant Application

Cellular One hereby formally appeals the October 15, 2003 Building Inspector's determination and seeks an interpretation of the Town of New Windsor Zoning Code from the Zoning Board of Appeals. In particular, Cellular One seeks a determination by the Zoning Board of Appeals that its proposed wireless facility for the Premises constitutes the shared use of an existing tall structure, which is a permitted use by special permit in the R-1 zoning district. In the alternative, should the Zoning Board of Appeals not concur with this conclusion, Cellular One seeks a use variance to permit the development of its proposed wireless facility on the Premises. Cellular One also respectfully submits that, as demonstrated by the site plans and other materials submitted herewith, its proposed development of a wireless facility on the Premises would have a *de minimis* impact on the surrounding neighborhood, particularly considering the myriad of antennas and communications equipment presently atop the existing tower.

Cellular One's Proposed Facility Constitutes the Shared Use of an Existing Tall Structure, Which is a Specially Permitted Use in the R-1 Zoning District

Section 48-21M of the Town of New Windsor Zoning Code is entitled "Telecommunications towers." Among the purposes of this section is "to minimize the total number of telecommunications towers in the community by encouraging shared use of existing and future towers, and the use of existing tall buildings and other high structures. . . ."

In order to effectuate this goal, Section 48-21M creates 3 tiers of review depending on the nature of the wireless facility proposed. If an applicant seeks to develop a Telecommunications Tower, a special permit is required. See Section 48-21M(3)(a). When a future applicant seeks

Chairman Torley and Members of the Zoning Board of Appeals October 20, 2003 Page 3

merely to co-locate on a previously approved Telecommunications Tower, only site plan approval is required. See Section 48-21M(3)(b). However, if an applicant seeks the "[s]hared use of existing tall structures," it must seek a special permit from the Planning Board pursuant to an abbreviated review. See Section 48-21M(4).

Cellular One respectfully submits that its proposed wireless facility constitutes a shared use of an existing structure and neither a new Telecommunications Tower nor a co-location on a previously approved Telecommunications Tower for the reasons set forth below.

According to Section 48-21M(2) a Telecommunications Tower is any structure which is greater than 35 feet in height. No component of Cellular One's proposal is greater than 35 feet in height. Each antenna is a mere 48 inches in height and the related equipment shelter is approximately 10 feet tall. It is also noteworthy that the Planning Board cannot even consider an application for a new Telecommunications Tower unless "the applicant demonstrates that shared use of existing tall structures and existing or approved towers is impractical." See Section 48-21M(5). Further, "[w]here shared use of existing tall structures and existing or approved towers is found to be impractical, the applicant shall investigate shared usage of an existing tower site for its ability to accommodate a new tower and accessory uses [i.e., clustering]." It is not until all these other alternatives have been exhausted that an applicant can propose a new tower at a new location. Section 48-21M(7). These requirements are consistent with Section 48-21M(3)(c)'s limitation of Telecommunications Towers to specific zoning districts.

In contrast with the development of Telecommunications Towers, shared use of existing tall structures is encouraged throughout Section 48-21M. Indeed, the shared use of existing tall structures and existing or approved towers is preferred to the construction of new towers at all times. See Section 48-21M(4). Section 48-21M(4), which governs shared use applications, expressly lists the submission materials, and notes in sub-section (b) that "[i]f an applicant proposing to share use of an existing tall structure submits complete and satisfactory documentation in accordance with Subsection M(4)(a)[1] through [6] above, and if modifications indicated according to those subsections are deemed insignificant by the Planning Board, and after the Planning Board conducts a public hearing and complies with all State Environmental Quality Review Act (SEQRA) provisions, the [Planning] Board shall grant a special permit without further review " Moreover, in an attempt to create incentives for shared use, the Planning Board is overtly given the authority in sub-section (c) of the shared use provisions to "modify or waive setback or lot area requirements in the event that they are not deemed necessary for safety or other valid planning purposes for the site." Additionally, shared use is so preferred to new Telecommunications Towers that Section 48-21M(8) requires all applicants to structurally design new Telecommunications Tower to handle co-location, and to agree in writing to allow co-location.

Any claim that the purpose of Section 48-21M(3)(c) is to prevent the development of all telecommunications sites in any zoning district other than the AP, PI, OLI, C and NC zones clearly violates the federal Communications Act of 1934, as amended by the Telecommunications Act of 1996, because it would "prohibit or have the effect of prohibiting the provision of personal wireless services." See Exhibit A, entitled "The Mandate of the Telecommunications Act of 1996," and Exhibit B, which is a copy of a written, advisory, legal opinion issued by the Federal Communications Commission through its Wireless Telecommunications Bureau and Commercial Wireless Division, dated September 2, 1997, related to a city's lack of authority to prohibit wireless facilities in certain zones.

Chairman Torley and Members of the Zoning Board of Appeals October 20, 2003

Page 4

Based on the above, it is clear that Cellular One's desire to mount 9 panel antennas at the 173 foot above grade level ("AGL") on the existing 224 foot tall WGNY radio transmission tower and to place an associated unmanned 20 foot long by 12 foot wide equipment building at the base this tower does not involve the development of a Telecommunications Tower. Cellular One also acknowledges that its application does not entail co-location on a Telecommunications Tower. Rather, Cellular One respectfully submits that its proposed wireless facility for the Premises constitutes the shared use of an existing tall structure (i.e., the existing radio transmission tower), which is a specially permitted use in the R-1 zoning district.

In rer dering its interpretation, Cellular One respectfully requests that the Zoning Board of Appeals be nundful that, the principle that zoning ordinances must be strictly construed in favor of property owners and against municipalities because zoning regulations are in derogation of common-law property rights, is firmly established in this State. See Raritan Development Corp. v. Silva, 91 N.Y.2d 98, 667 N.Y.S.2d 327 (1997); Chrysler Realty, 196 A.D.2d 631, 601 N.Y.S.2d 194 (2d Dept. 1993); NYSMSA v. Town of Islip ___A.D.2d___, __N.Y.S.2d___ (2d Dept N.Y.L.J. December 9, 2002. Indeed, the Court of Appeals held in City of New York v. Les Hommes, 94 N.Y.2d 267, 702 N.Y.S.2d 576 (1999) that "[t]he cases guiding [the court's] analysis in this area require that [the court] show a healthy respect for the plain language employed and that it be construed in favor of the property owner and against the municipality which adopted and seeks to enforce it." This decision is consistent with its holding in Thomson Industries, Inc. v. Village of Port Washington, 27 N.Y.2d 537, 313 N.Y.S.2d 117 (1970), where the Court of Appeals strictly construed the term "heliport" and found that the term as employed in the zoning code only applied to commercial operations and not to appellant's personal takeoff and landing of its helicopter. Numerous other courts have also recognized this doctrine. See Toys "R" Us v. Silva, 229 A.D.2d 308, 646 N.Y.S.2d 91 (1st Dept. 1996)(holding that "[z]oning ordinances must be narrowly interpreted and ambiguities are to be construed against the zoning authority"), rev'd on other grounds, 89 N.Y.2d 411, 654 N.Y.S.2d 100 (1996); Mandel v. Nusbaum, 138 A.D.2d 597, 526 N.Y.S.2d 179 (2d Dept. 1988) (noting the strict construction requirement applicable to zoning ordinances); Matter of Sinon v. Zoning Board of Appeals of the Town of Shelter Island, 117 A.D.2d 606, 497 N.Y.S.2d 952 (2d Dept. 1986). It is also an accepted rule of statutory construction that an interpreting authority must ascribe the ordinary and logical meaning to all terms in a zoning law. See McKinney's, Statutes, Section 232.

Here, the utilization of the above statutory rules and consideration of the Telecommunications Act's legal requirement that local regulations "shall not prohibit or have the effect of prohibiting the provision of personal wireless services" in combination with the Town's

It is a general rule in the interpretation of statutes that the legislative intent is primarily to be determined from the language used in an act, considering the language in its most natural and obvious sense. From this general rule, it is deducible that words of ordinary import are to be construed according to their ordinary and popular significance, and are to be given their ordinary and usual meaning... In the framing of laws intended for the people, the Legislature should attempt to give them a meaning which will not be misunderstood by the citizenry, and the lawmakers are presumed to have used words as they are commonly or ordinarily employed, unless there is something in the context or purpose of the act which shows a contrary intention. So, the court must apply to language the meaning and effect generally attributed to words by common speech of men, and not by some esoteric standard....

² McKinney's, Statutes, Section 232 provides:

Chairman Torley and Members of the Zoning Board of Appeals October 20, 2003 Page 5

clear dislike of new Telecommunications Towers, requires the Zoning Board of Appeals to conclude that an existing radio transmission tower is akin to the enumerated existing tall structures (i.e., municipal water towers, multistory buildings, church steeples and farm silos) and dissimilar from a Telecommunications Tower. Consequently, it is respectfully submitted that Cellular One's proposed wireless facility for the Premises constitutes the shared use of an existing tall structure, which is a specially permitted use in the R-1 zoning district.

Alternatively, Approval of Cellular One's Use Variance Application is Warranted Because It Fully Complies with the Applicable Criteria

In the event the Town of New Windsor Zoning Board of Appeals does not agree with Cellular One's position that its proposed wireless facility constitutes the shared use of an existing tall structure, Cellular One seeks in the alternative a use variance in order to develop its wireless facility on the Premises.

Pursuant to New York State <u>Town Law</u> Section 267-b(3), a zoning board of appeals may grant a use variance if the applicant has demonstrated that the applicable zoning regulations and restrictions have caused unnecessary hardship. "In order to prove such unnecessary hardship the applicant shall demonstrate to the board of appeals that for each and every permitted use under the zoning regulations for the particular district where the property is located:

- (i) the applicant cannot realize a reasonable return, provided that lack of return is substantial as demonstrated by competent financial evidence;
- (ii) the alleged hardship relating to the property in question is unique, and does not apply to a substantial portion of the district or neighborhood;
- (iii) the requested use variance, if granted, will not alter the essential character of the neighborhood; and
- (iv) the alleged hardship has not been self-created."

However, it has long been recognized by the prevailing case law in the State of New York that public utilities are not subject to the same exacting standards necessary to obtain a variance as are other entities. Instead, a zoning board of appeals reviewing an area or use variance application by a public utility must apply the less restrictive standard of "public necessity." The difference in these standards has been set forth as follows:

... the utility must show that modification is a public necessity in that it is required to render safe and adequate service, and that there are compelling reasons, economic or otherwise, which make it more feasible to modify the plant than to use alternate sources of power such as may be provided by other facilities.... [And,] where the intrusion or burden on the community is minimal, the showing required by the utility should be correspondingly reduced.

Consolidated Edison Co. of New York v. Hoffman, 43 N.Y.2d 598, 374 N.E.2d 105, 403 N.Y.S.2d 193 (1978); Matter of Cellular One v. Rosenberg, 153 Misc.2d 302, 581 N.Y.S.2d 554 (Westchester Co. 1992), affirmed, 188 A.D.2d 648, 591 N.Y.S.2d 526 (2d Dept. 1992), affirmed, 82 N.Y.2d 364, 624 N.E.2d 990, 604 N.Y.S.2d 895 (1993).

Chairman Torley and Members of the Zoning Board of Appeals October 20, 2003 Page 6

In short, the "public necessity" standard provides that "a zoning board may not exclude a utility from a community where the utility has shown a need for its facilities." Consolidated Edison Co. of New York v. Hoffman, 43 N.Y.2d at 610; Matter of Cellular One v. Rosenberg, 604 N.Y.S.2d at 899. The "public necessity" standard applies to all public utilities. It applies to entirely new facilities as well as the expansion of existing facilities. Moreover, wireless companies, such as Cellular One, have been determined to be public utilities subject to the "public necessity" standard and not New York State Town Law Section 267-b. Consequently, the New York State Courts have determined that a zoning board of appeals must utilize the following less restrictive standard in evaluating a variance application:

A balance must be maintained between those interests of the locality which can be expressed by Zoning Ordinances and the needs of the community which must be served by the utility...not only is it within the power of Respondent [the Town] to grant a Variance but the fact that the applicant is a utility calls for the balancing of interests. Consolidated Edison Co. of New York v. Hoffman, supra.

As demonstrated herein, it is respectfully submitted that Cellular One's use variance application conforms to the requirements of the "public necessity" standard because it establishes that the development of the proposed wireless facility would enable Cellular One to remedy gaps in its coverage that currently prevent it from providing adequate service to its customers in the Town of New Windsor.

Cellular One's existing wireless network is not adequate to properly service its customers who live in and travel through the Town of New Windsor. Cellular One currently has only limited wireless service in the Town of New Windsor. Indeed, a Radio Frequency Report, prepared by Dan Hubbard, a Radio Frequency Engineer with Cellular One, dated September 30, 2003, has been submitted. This report attests to Cellular One's need for a wireless facility in the vicinity of the Premises in order to provide wireless service along Route 207 from Interstate 87 west to Route 208 and from Route 207 to the Town of Washingtonville along Toleman Road. The report also substantiates that the existing Nextel Communication monopole across Toleman Road from the Premises is not a viable alternative facility for co-location. Thus, Cellular One will not be able to provide its FCC licensed service throughout the Town of New Windsor without the requested relief.

By mounting its antennas on the existing radio transmission tower, Cellular One can provide its service to the public with only *de minimis* visual impact to the surrounding neighborhood. Photosimulations have been submitted, which depict the Premises as it exists today and as it would look after the installation of Cellular One's facility on the Premises. Reference to those photosimulations reveals that Cellular One's proposed facility will not be distinguishable from the other radio and communications facilities on the Premises.

Additionally, the proposed wireless facility will not adversely affect the health, safety or welfare of the public. The radio frequency emissions associated with the proposed facility are below the limits adopted by the FCC as required by the Telecommunications Act.

Further, the proposed wireless facility will have no impact on the use of the Premises. It is also noteworthy that Cellular One's proposed wireless facility will not generate additional traffic, nor will it have any impact on pedestrian or vehicular traffic because it is unmanned, and

Chairman Torley and Members of the Zoning Board of Appeals October 20, 2003

Page 7

only requires quarterly maintenance visits by a service technician that generally last for an hour. During these infrequent visits, the technician will use the existing access and on-site parking. In addition to these maintenance visits, the wireless facility will be monitored by Cellular One 24 hours a day, 7 days a week from a remote location.

Cellular One's proposed wireless facility will not produce any discernable smoke, gas, odors, heat, vibrations or noise. No water, sewage disposal or other public services will be associated with the facility. Further, the proposed facility will not result in additional storm water runoff, nor does it require any outdoor lighting improvements. No commercial signs are proposed by Cellular One. Thus, it is respectfully submitted that the proposed facility will not affect the current or future use of the Premises or the adjacent lands.

Based on the law as set forth by the New York State Courts, the public necessity of Cellular One's service, the need for the installation of the proposed wireless facility and its minor impacts, if any, upon the Town, Cellular One respectfully submits that the granting of the requested use variance is warranted. It is further submitted that approval of Cellular One's wireless facility is consistent with the procedural and substantive requirements set forth in the Communications Act of 1934, as amended by the Telecommunications Act of 1996, and the FCC's rules and regulations.

Materials Submitted in Support of the Application

In support of its request for an interpretation, or alternatively a use variance, the Chazen Companies have submitted under separate cover 10 sets of the following materials on behalf of Cellular One:

- 1. October 15, 2003 Denial Letter issued by Building Inspector Michael Babcock.
- 2. Completed Town of New Windsor Variance Application Forms.
- 3. An Owner's Consent Form evidencing Cellular One's authority to file this application.
- 4. A Full Environmental Assessment Form, dated October 17, 2003, prepared in accordance with Article 8 of the New York State Environmental Conservation Law and the rules and regulations promulgated thereunder at 6 N.Y.C.R.R. Part 617 ("SEQRA").
- 5. A Visual EAF Addendum.
- 6. Photosimulations, which depict the Premises as it exists today and as it would look after the installation of Cellular One's wireless facility.
- 7. A Radio Frequency Affidavit, dated September 30, 2003, prepared by Dan Hubbard, a Cellular One Radio Frequency Engineer, justifying Cellular One's need for the wireless facility.
- 8. Site Plan Drawings, dated September 10, 2003, last revised October 16, 2003.
- 9. A Tower Structural Analysis Report, dated September 8, 2003.

Chairman Torley and Members of the Zoning Board of Appeals October 20, 2003

Page 8

10. Checks made payable to the "Town of New Windsor" in the amounts of \$150, \$500, and \$25, which constitute payment of the application fee, the escrow and the deposit for the public hearing list.

Conclusion

It is respectfully submitted that Cellular One's proposed wireless facility constitutes the shared use of an existing tall structure, which is a specially permitted use in the R1 zoning district subject to review by the Planning Board. In the alternative, Cellular One respectfully submits that approval of its variance application is warranted based on the foregoing materials because it fully complies with the applicable variance criteria. It is also noteworthy that Cellular One's proposed wireless facility constitutes the least intrusive means available for filling its gap in wireless service.

Cellular One looks forward to appearing before the Zoning Board of Appeals and respectfully request that this application be placed on the next available agenda. Should the Zoning Board of Appeals or Town Staff have any questions or comments in the interim, please feel free to contact me. Thank you in advance for your cooperation and consideration in this matter.

Very truly yours,

Neil L Alexande

NJA/dt Enclosures

Cc: Chairman James Petro and Members of the Planning Board
Mark J. Edsall, PE, Town Engineer, by fax: (845) 567-3232
Michael Babcock, Building Inspector, by fax: (845) 563-4685
Philip Crotty, Esq., Town Attorney, by fax: (845) 562-6788
Andrew S. Krieger, Esq., Zoning Board of Appeals Attorney
Kevin Brennan, Cellular One, by fax: (845) 483-8405
Dan Hubbard, Cellular One Radio Frequency Engineer
Kelly Libolt, AICP, The Chazen Companies, by fax: (845) 454-4026
Eva L. Billeci, AICP, The Chazen Companies

EXHIBIT "A"

The Mandate of the Telecommunications Act of 1996

The regulation of "personal wireless service facilities" is specifically addressed in § 704 of the Telecommunications Act of 1996, codified in 47 USC § 332(c)(7)(B). The Telecommunications Act of 1996 is an omnibus overhaul of the federal regulation of communications companies intended to provide for a pro-competitive, de-regulatory national policy framework designed to accelerate rapidly private sector deployment of advanced telecommunications and information technologies and services by opening all telecommunications markets to competition. In furtherance of this goal, Congress enacted provisions in the Telecommunications Act that limit State and local governmental authority to deny the construction of wireless telecommunications towers and regulate how such decisions must be made.

Indeed, the explicit preemptive language of the Telecommunications Act makes it clear that there are five (5) limitations on state or local regulation of the placement, construction and modification of "Personal Wireless Service Facilities":

- (1) local regulations may not unreasonably discriminate among providers;
- (2) local regulations "shall not prohibit or have the effect of prohibiting the provision of personal wireless services;"
- (3) a request for permission to place or construct wireless telecommunications facilities must be acted on within a reasonable time;
- (4) any denial to place, construct, or modify personal wireless services must be in writing and supported by substantial evidence contained in a written record;
- (5) local regulations may not regulate the placement, construction or modification of personal wireless service facilities on the basis of the "environmental effects of radio frequency emissions" as long as the facilities meet standards set by the FCC. The Telecommunications Act, 47 USC § 332(c)(7)(B).

The legislative history of the Telecommunications Act emphasized the requirement that local regulations cannot prohibit or have the effect of prohibiting personal wireless facilities. The conference report accompanying § 704 explains:

Actions taken by state or local governments shall not prohibit or have the effect of prohibiting the placement, construction or modification of personal wireless services. It is the intent of this section that bans or policies that have the effect of banning personal wireless services or facilities not be allowed and that decisions be made on a case-by-case basis. H.C.R. No. 104-458, 104th Congress, 2d Sess. 208 (1996), reprinted in 1996 U.S.C.A.A.N. 222. See also Cellular Telephone Co. v. Town of Oyster Bay, 166 F.3d 490, 493 (S.D.N.Y. 1999).

The Telecommunications Act clearly prohibits local governments from enforcing outright bans on wireless telecommunications facilities. Further, any zoning limitations on placement or construction of facilities may not have the effect of precluding a wireless telecommunications provider's ability to offer service.

Also salient is the Telecommunications Act's express prohibition that a local zoning authority may not unreasonable discrimination among "functionally equivalent service providers." See The Telecommunications Act, 47 USC § 332(c)(7)(B)(i)(I). If communications companies are already providing personal wireless services within the Town of New Windsor (such as Sprint, Verizon, Nextel, and VoiceStream), decisions by zoning agencies may not

discriminate and must allow for competitors, such as Cellular One, to operate in the Town on an equal footing. 47 USC § 332(c)(7)(B)(iv). See also Sprint Spectrum, LP v. Willoth, 176 F.3d 630 (2d Cir. 1999). Accordingly, all state and local zoning actions with respect to wireless facilities must be in accordance with the above-cited provisions of the Telecommunications Act.

More recently, Congress enacted, on October 26, 1999, the Wireless Communications and Public Safety Act of 1999 ("911 Act"), which mandates that wireless carriers promptly implement Basic and then Enhanced 911 service. The overall purpose of the 911 Act is to encourage and facilitate the prompt deployment throughout the United States of a seamless, ubiquitous and reliable end-to-end infrastructure for emergency communications, including wireless communications, to meet the nation's public safety and other emergency communications needs. Congress found that the establishment of a network that provided for the rapid, efficient deployment of emergency services would result in many public benefits including faster delivery of emergency care with reduced fatalities and severity of injuries and improved service in rural areas. Congress also noted that in our increasingly mobile society reliance on wireless phones in emergency situations has grown to such an extent that wireless 911 callers are now experiencing problems in obtaining prompt, reliable aid when compared to wireline 911 callers.

On the roadways, consumers are using these phones to call for help for themselves, to report accidents or injuries to other drivers and to report erratic or aggressive drivers before others are injured. Consequently, the FCC has adopted rules requiring wireless carriers to provide both Basic 911 service, which connects the caller to a public safety answering point ("PSAP"), and Enhanced 911 service, which provides certain information to assist the PSAP in locating the caller, in a timely fashion throughout the country. Further, in the 911 Act, Congress included several provisions in order to facilitate expeditious achievement of improvements in the wireless emergency communications systems provided by wireless carriers licensed by the FCC.

September 2, 1997

Mr. Mark G. Sellers

City Attorney

City of Thousand Oaks

2100 Thousand Oaks Boulevard

Thousand Oaks, California 91362-2903

RE: Request for Written Response on City's Authority to Prohibit Transmission Facilities in Certain Zones.

Dear Mr. Sellers:

I am writing in response to your correspondence dated July 22, 1997, requesting the Commission's input on several issues concerning the location and installation of transmission facilities for "wireless telecommunications services" in the city of Thousand Oaks, California ("the City"). You note that the City is currently drafting an ordinance which would regulate such activities. While you have not provided us with a draft of the ordinance, I will attempt to respond to the questions raised in your letter. Please note that the views stated herein are strictly advisory and reflect the views of the staff of the Commercial Wireless Division only. This letter does not constitute a formal ruling by the Wireless Telecommunications Bureau or the Commission.

At the outset, I note that you do not define the term "wireless telecommunications services." Therefore, please note that this opinion only relates to the construction, placement or modification of "personal wireless service facilities" as that term is defined in Section 332(c)(7)(C)(ii) of the Communications Act of 1934, as amended ("the Act").

You inquire as to whether the City may prohibit the location of transmission facilities in all "residential" or "open spaces" which comprise 70% to 80% of the City. Facilities would be allowed only in "commercial" or "industrial" zones where you currently have a height restriction of 35 feet. You request an opinion as to whether such regulations would be consistent with the Act. You also request an opinion as to whether the City's regulations (relating to "location and height of facilities") must allow carriers to provide coverage over the entire City.

Section 332(c)(7)(A) of the Communications Act of 1934, as amended, preserves State and local governments' authority over decisions regarding the placement, construction, and modification of personal wireless service facilities. At the same time, Section 332(c)(7)(B) contains certain limitations to that authority. Section 332(c)(7)(B)(i)(II) states that the regulation of personal wireless service facilities shall not prohibit or have the effect of prohibiting the provision of personal wireless services.

Whether your proposed location and height restrictions would "prohibit or have the effect of prohibiting personal wireless services" is a question that would have to be reviewed pursuant to Section 332(c)(7) (B)(i)(II) on a case-by-case basis after full examination of the specific facts and circumstances. We note that under the statute, such review is reserved to the courts rather than the FCC. We believe it could

plausibly be argued, however, that the existing height restriction of 35 feet, combined with the proposed location restriction that would prohibit siting on 70% - 80% of the available land area in the City is sufficiently restrictive to be viewed as effectively prohibiting the provision of personal wireless services.

You also inquire as to whether carriers are required to provide a certain level of coverage to your City and, if so, who determines whether the level of local coverage is sufficient? The Commission's rules for licensees in the personal wireless services differ from service to service but, generally speaking, so long as a licensee provides significant coverage throughout its licensed area, the rules do not require that a level of coverage be met with respect to specific cities or towns. As to whether your regulations must permit coverage over the entire City, as noted above, Section 332(c)(7)(B)(i)(II) does not permit state and local governments to effectively prohibit the provision of service. While the term "effectively prohibit" is not defined, a plain reading could suggest that state and local governments are not permitted to drastically limit the availability of service within significant portions of their jurisdictions. Thus, any regulation or action that does not permit reasonable means to offer a desired quality of service to substantial areas of the City is arguably prohibited. Again, however, application of Section 332(c)(7)(B) (i)(II) to specific circumstances is reserved for the courts to decide.

I trust that this response answers all of your questions. Should you have any additional questions concerning these matters, please feel free to contact the Wireless Telecommunications Bureau.

Very truly yours,

Shaun A. Maher

Attorney-Advisor

Commercial Wireless Division

Wireless Telecommunications Bureau

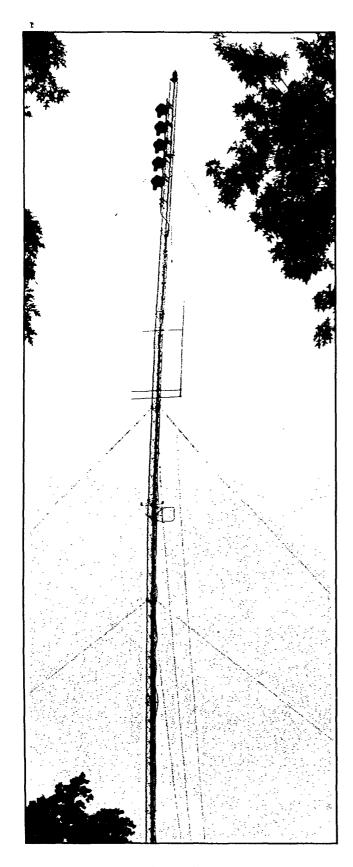


Figure 1 Existing view as seen from Figure 1.

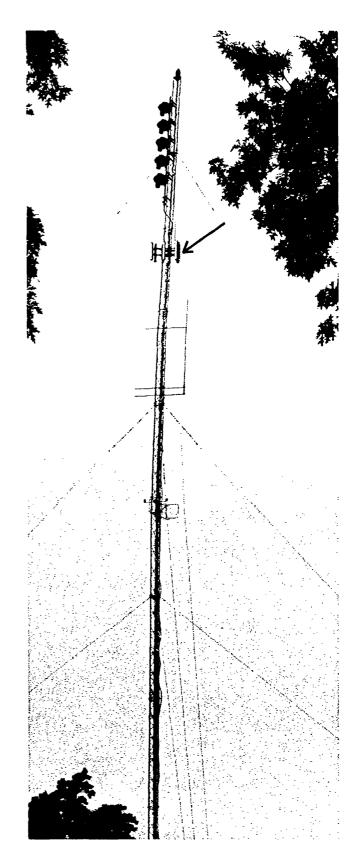


Figure 1a
View of proposed 9 panel antennas superimposed onto the photograph of Figure 1.

Figure 2 Existing view as seen from Figure 2.

Figure 2a
View of proposed 9 panel antennas superimposed onto the photograph from Figure 2.

Tower Structural Analysis Report for

New Windsor

Town of New Windsor Orange County, New York

September 8, 2003

Prepared by:
Capital District Office:
The Chazen Companies
20 Gurley Avenue
Troy, New York 12182

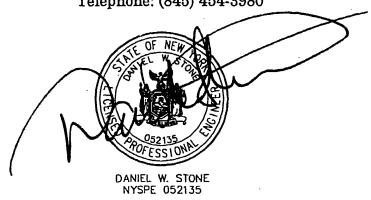
Prepared for:
Mr. Kevin Brennan
Cellular One
1351 Route 55
LaGrangeville, NY 125840

Dutchess County (845) 454-3980 North Country Office (518) 812-0513

Orange County (845) 567-1133

Structural Analysis Report

220' Guyed Tower New Windsor, New York The Chazen Companies Project # 10381.00


> Contact Person: Eva Billeci Client Manager

email: <u>mailto:ebilleci@chazencompanies.com</u> Telephone: (845) 454-3980 ext. 474

Completed under the Supervision and Approval by Daniel W. Stone, P.E.

Principal

Telephone: (845) 454-3980

Daniel W. Stone NY Professional Engineer #052135

TABLE OF CONTENTS

1.0	EXECUTIV	E SUMMARY			
2.0	MODEL ASSUMPTIONS				
3.0	RESULTS OF TOWER CLIMB				
4.0	EXISTING/PROPOSED ANTENNA & CABLE LOADING				
5.0	CURRENT WIND LOADING REQUIREMENTS				
6.0	RESULTS				
То	wer Supers	tructure Results			
Fo	undation R	esults			
7.0	RECOMME	ENDATIONS			
Арр	endix A:	Mid State Communications Tower Mapping & Inspection August 22, 2003			
App	endix B:	Model Results (Prior to Retrofit)			
Appendix C:		Model Results (After Retrofit)			

1.0 EXECUTIVE SUMMARY

Chazen Engineering & Land Surveying Co., P.C. (CELS) performed a structural analysis of the existing 220-foot guyed tower located in the Town of New Windsor, Orange County, New York. The results of the analysis indicate the existing tower superstructure is not adequate to support the existing and proposed loads; however, with modifications, the tower superstructure can be made adequate to support the existing and proposed loads.

2.0 MODEL ASSUMPTIONS

- All tower steel is assumed to be ASTM A36;
- All tower member properties are defined by the Mid-State Communications Tower Mapping & Inspection dated August 22, 2003 (Appendix A);
- The proposed coaxial cables are to be stacked to a maximum width of 13 1/2";
- Any deviation from the analyzed loading will require a subsequent tower analysis for verification of structural integrity;
- This analysis assumes all tower members are galvanized adequately to prevent corrosion of the steel;
- Accounting for residual stresses due to incorrect tower erection cannot be made from the visual observation of the tower;
- The tower was erected and maintained in accordance with the manufacturer's plans and specifications and is plumb;
- The information concerning the components, existing and proposed, is accurate.

3.0 RESULTS OF TOWER CLIMB

A summary of the climb performed by Mid-State Communications, on August 22, 2003 regarding the condition of the tower is as follows:

- Bolts are appropriately tightened providing the necessary connection continuity;
- The tower is plumb;
- There was no observed damage, natural or manmade, to the structure, either gradual or sudden except one diagonal as noted in the inspection report; and,

• There were no observed modifications to the tower itself, except as may be disclosed elsewhere in this report.

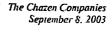
A detailed report of the findings can be found in Appendix A.

4.0 EXISTING/PROPOSED ANTENNA & CABLE LOADING

Existing antenna loading included in this analysis was provided by a Tower Climb performed by Mid-State Communications on August 22, 2003 (Appendix A).

EXISTING

Antenna Description	Height*	Cable Description
(1) Unisys FA10207/3 FAA Horn	42'-2"	(1)-1/2" Coaxial Cable
(1) Scala PRF 950 Corner Reflector	116'-4"	(1)-LDF5-50A
(2) Obstruction Lights	118'	(1)-1" Conduit
(1) Stationmaster Whip Antenna	141'	(1)- LDF5-50A
(1) 5-Bay FM Antenna	190'-210'+/-	(1)-15850J
(1) Beacon	220' +/-	(1)-1" Conduit


^{*}Height is the centerline of attachment

PROPOSED

Antenna Description	Height*	Cable Description
(9) Decibel DB844H90E Panel Antennas	173'	(9)-1 5/8"

*HEIGHT IS THE CENTERLINE OF ATTACHMENT

These antennas and cables represent CELS's understanding of the loading required. Please contact CELS if any discrepancies are evident. If antennas or cables, other than those indicated above are installed on this structure, this analysis is invalid.

5.0 CURRENT WIND LOADING REQUIREMENTS

This analysis has been completed in accordance with the Telecommunications Industry Association Standard (TIA/EIA 222-F 1996) recommended standards for Orange County. CELS has analyzed this structure using the following wind speed and ice criteria

Code/Standard	Wind Loading	Ice	Wind Load Reduction Used
TIA/EIA-222-F	70 mph fastest mile	None	None
TIA/EIA-222-F	70 mph fastest mile	⅓"Radial	25%

6.0 RESULTS

Tower Superstructure Results

Under the 70-mph wind with ½" radial ice scenario, our results indicate a maximum stress of 134.5% of the tower superstructure's capacity. This scenario is the worst case, as can be seen from the results provided in Appendix B. As such, the existing tower superstructure is not capable of supporting the existing and proposed equipment under the required load cases.

It is possible to retrofit the existing tower structure to increase its capacity to adequately support the existing and proposed telecommunications equipment.

Foundation Results

CELS has performed an analysis of the tower superstructure only. Tower foundation information has not been provided; therefore foundation analysis and/or review has not been performed. At this time CELS cannot provide a professional opinion regarding the structural integrity, adequacy, or capacity of the foundation system.

7.0 RECOMMENDATIONS

CELS recommends replacing the guy cables with those indicated in the table below. An analysis of the tower with the proposed superstructure modifications indicates a maximum stress of 94.4% of the tower superstructure capacity under the 70-mph with ½" radial ice scenario (Appendix C). As such, the tower superstructure would be capable of supporting the existing and proposed load scenarios if these design modifications are followed.

As was stated above, foundation information was not available at the time of our analysis; as such, we have not analyzed the existing foundations, including the guy anchor foundations, and therefore cannot provide recommendations.

Elevation (ft)	Existing Size	New Size
200.25	3/8" EHS	1/2" EHS
139.75	3/8" EHS	7/16" EHS
99.75	3/8" EHS	3/8" EHS (N/C*)
50.00	3/8" EHS	3/8" EHS (N/C*)

^{*}N/C denotes no change.

APPENDIX A: Mid-State Communications Tower Inspection Report, August 22, 2003

TOWER INSPECTION REPORT

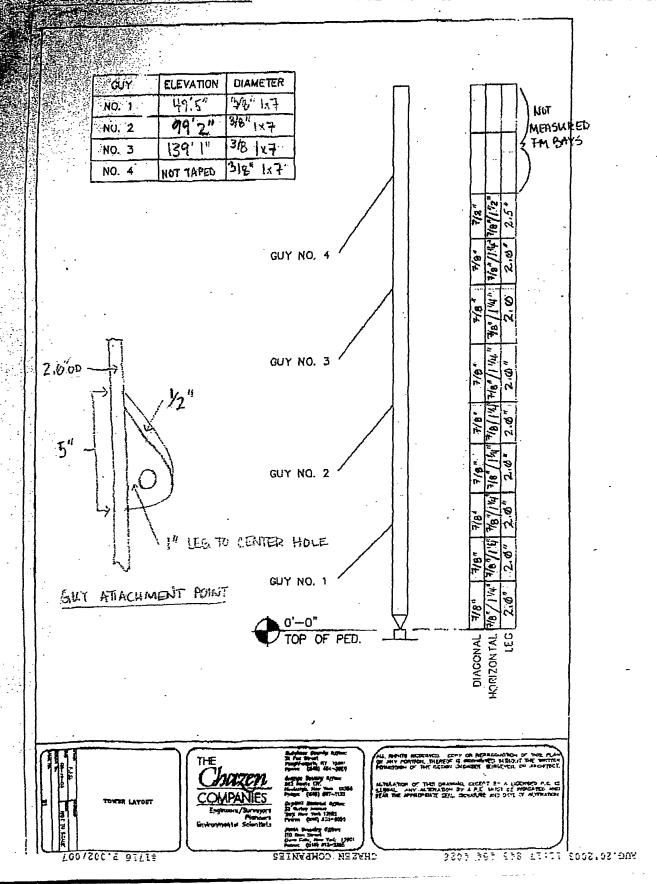
Guyed Towers

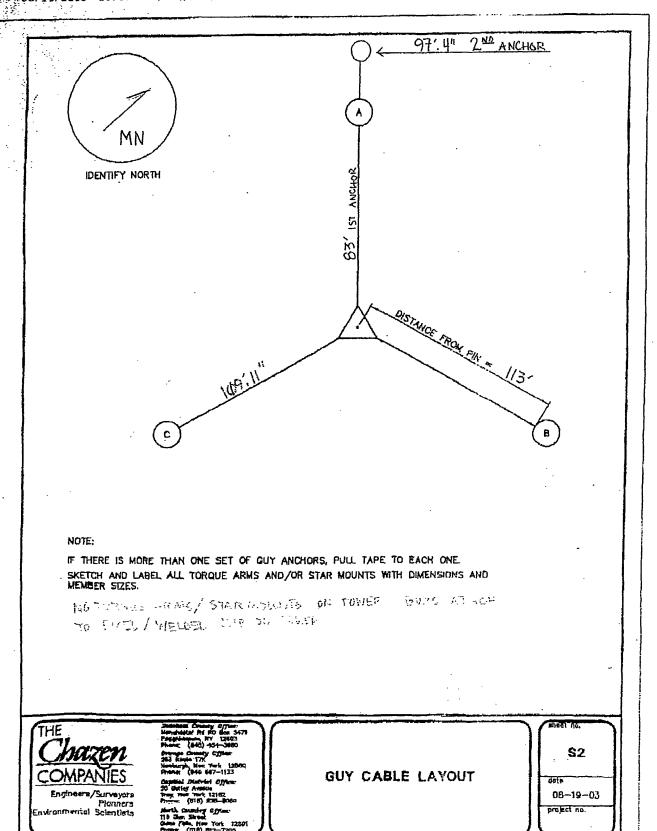
STATEMENT OF PURPOSE: It is Mid-States Policy to inspect the entire Tower Facility equal to and Beyond the Manufactures Specifications and to determine if there are any observable structural or transmission System problems.

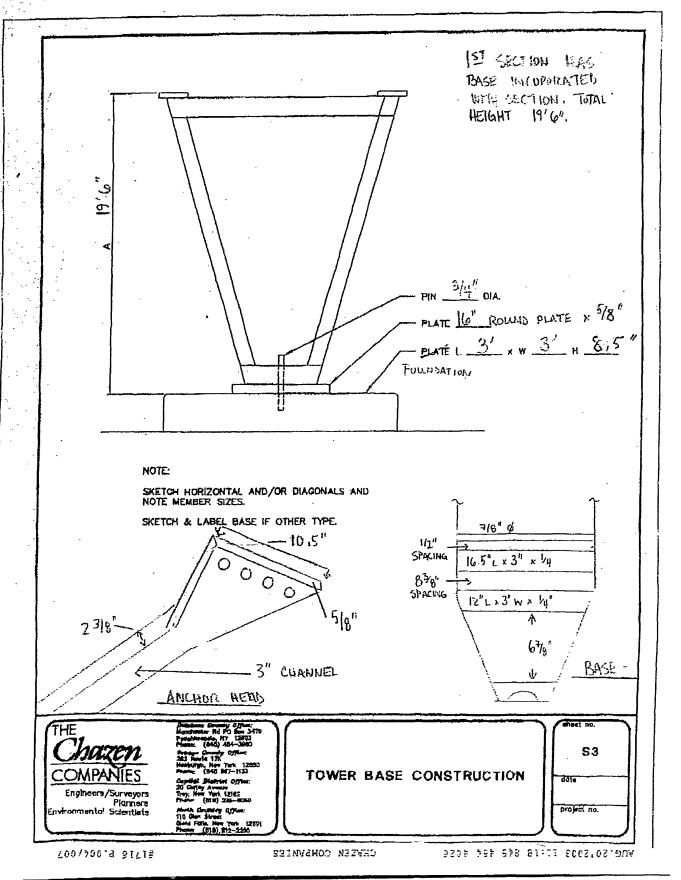
Genenal St.	Mid-State Project Number: 03-450			
Owner: WGNY	Date: 8/22/03 Time:9:30			
Location: 535 Toleman Road	Site Number: FCC# 1007160			
Wind (Approx): NW MPH: 0-5 DIR	Temperature: 90			
Latitude: Not DEG: Available MIN: SEC	Longitude: Not Available DEG: MIN: SEC			
Tower Steel				
Manufacturer of Tower: Not Labeled				
Height: 220' Not taped all the way Number of Legs: 3	Angle: Pipe: 🖂			
Was Tower Plumb & Level as Found: YES: ⋈ NO: If N	o Explain: Within specifications			
Signs of Rust: YES: NO: (Photo if Yes)	Missing Members: YES: NO: (Photo if Yes)			
Painted: YES: NO: Condition of Paint:Good-Aviation C	Orange / White			
Bolts Tight: YES ⊠ NO: ☐ Condition of Bolts:Good 9/16" x 3	п			
Type of Waveguide Bridge: (Photo if Irregular) None				
Distance from Leg Center to Leg Center: 20" Base Number: Not Found				
Drainage (Weepholes Clear): YES: NO: Explain	N/A Solid Leg			
	·			
Toundation	Section 2			
Foundation Cond: (Photo): Good	Anchor Cond: Poor-See Remarks			
Soil Condition: Normal: 🗵 Rock: 🗌 Swamp: 🗍 Sand: 🗍				
*Guy:Wire & Appurtenances	Section 3			
Preforms Cond: (Photo): Fair-Rusted surface	Turnbuckles Cond: Fair 5/8"			
Guy Wire Cond: Fair-Surface to pitted	Safety Wire Cond: Fair-Not a figure 8			
Grounding Cables Condition: Bad-No groundgin	Clamps Condition: Fair-Slight Rust			
Antennas Condition: Good-FM Bays not checked	Brackets Condition: Fair-Slight Ruse			
Transmission Line Condition: Good	Transmission Line Attached Well: YES: NO:			
Safety Climb: YES: NO: Cond: N/A	Explain:			
Is Lightning Protection Adequate: YES: NO: Explain: See Remarks				
Note: The Term "Good" as used in this report indicates the item was found to be in serviceable condition.				

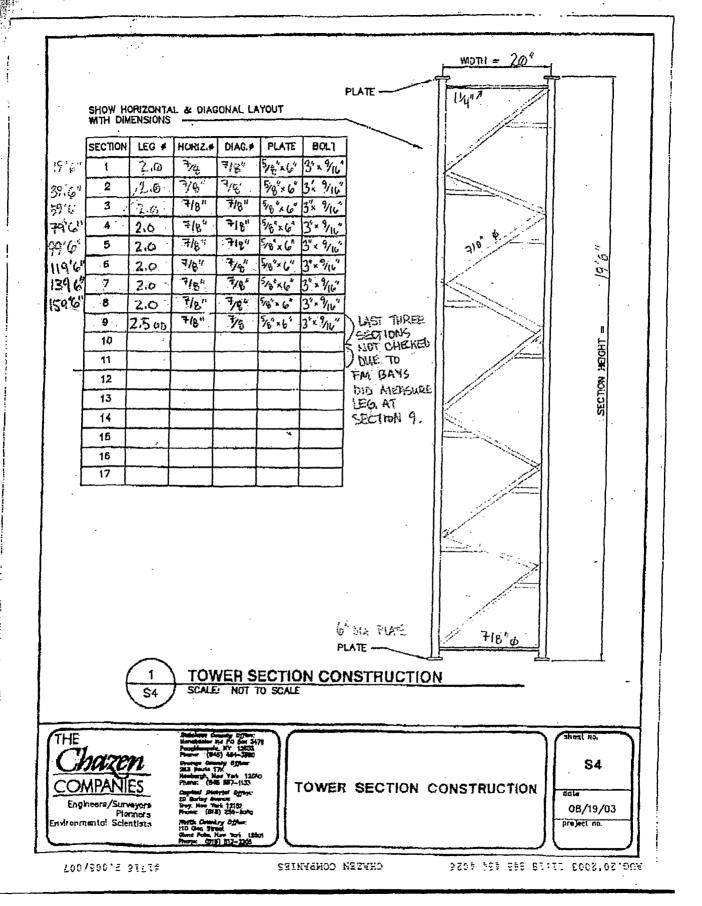
Highting & Tower Grounding Section 4				
Tower Lights Operational: YES: NO: If NO were repairs completed: YES: NO:				
List Lamps Used: Beacon QTY: 0 OB QTY: 0 Spares remaining on site: Beacon QTY:0 OB QTY: 0				
Describe Condition of the Following: Conduit: 1" Conduit run up East face of tower				
Flasher Unit: Not Checked Wiring: Not Checked				
Lens Covers: Not Checked Photo Electric Control: Not Checked				
Is Tower Grounding up to Standards: YES: NO: 🗵				
Is Antenna System Grounding up to Standards: YES: NO:				
Equipment Shelter Section 5				
Manufacturer of Building:				
Pad Type: Concrete Pad: Concrete Pier: Gravel: None: Other:				
Is Building Level: YES: NO:				
Any Visible Signs of Leaks: YES: NO:				
Any Signs of Exterior Rust or Paint Problems: YES: NO: NO:				
Is Exterior Building Grounding up to Standards: YES: NO:				
Lock: Key: 🛛 Combination: 🗌 Alarm: 🗍				
What is the Type and Quantity of Transmission Line Feed Through: Type: QTY:				
Is Interior Clean: YES: NO:				
Any Signs of Rodent Penetration: YES: NO:				
Heater Functional: YES: NO: Thermostat Setting:				
Cooling: Power Exhaust: A/C: If A/C, Make: Model: Thermostat Setting:				
Electrical Service: Buried: Mast Pipe:				
Electrical Entrance AMPS: Brand: Are All Circuit Breakers Labeled: YES: NO:				
Total Individual Breakers AMPS: (Add each individual breaker used, but not on the main breaker)				
List Any Unused Breakers Installed: (QTY & AMP Rating)				
List Any Spare Uninstalled Breakers: (QTY & AMP Rating)				
Is Interior Building B\Grounding (Does not include equipment) up to Standards: YES: NO:				
Is Building & Equipment Grounding Joined: YES: NO:				
Generator: YES: NO: Make: Model:				
Transfer Panel Make: Model:				
Fuel Type: Propane: Diesel: Tank Location: Buried: Above Ground:				

Fuel Type: Propane:


			NS STANDARD STANDARD				·
#	HGT (FT)	MFG	Model	AZM	Freq	Customer	Notes
A	42' 2"	UNISYS Corp	FA10207/3	60	Not listed	FAA	1/2" Coax Direct
В	49'5"						1st Guy
С	81'						RG11 Coax Coiled (not is use)
D	99'2"						2nd Guy
E	116' 4"	Not Listed	PRF 950	65	940-960	. WGNY	LDF550 7/8
F	118' 4"			·		·	OB Lights
G	139' 1"						3rd Guy
H	141'4"						Station Master Base
I	152'	Not Listed	Station Master	Omni	Not Listed	Unknown	LDF550 W / 3' 1/2" Jumper
J	163'			·	·		Station Mater Tip W/ Top Rod
K	199'			•			4th Guy
L	170-190'						5 Bay FM Antenna RFS 15850J
М	220'						Steel (not taped)
N	224'						Beacon L/R (not taped)
0_		·					
P							
Q							
R							
s							
Т							ļ
U							
V							
w							
х							-
Y							
Z							


	and Children Continues as			
1 st Guys	Before:	1. 1125	2. 1100	3. 1100
1 Guys	After:	1.	2.	3.
2 nd Guys	Before:	1. 1300	2. 1500	3. 1200
2 Guys	After:	1.	2.	3.
3 rd Guys	Before:	1. 1200	2. 1000	3. 500
J duys	After:	1.	2.	3.
4 th Guys	Before:	1. 1450	2. 1800	3. 1800
+ Guys	After:	1.	2.	3.
5 th Guys	Before:	1.	2.	3.
J Guys	After:	1.	2.	3.
6 th Guys	Before:	1.	2.	3.
	After:	1.	2.	3.
7 th Guys	Before:	1.	2.	3.
, duys	After:	1.	2.	3.
8 th Guys	Before:	1.	2.	3.
- Guys	After:	1.	2.	3.


For Torque	Arm: Di ox and Re	cawaaan cord as Bo	Through the low		
and C	Before:	Left: Right:	<u>1. </u>	<u>2.</u> 2.	<u>3.</u> 3.
2 nd Guys	After:	Left: Right:	1. 1.	2 2.	<u>3.</u> 3.


Leperal Romarks		List Below Any Remarks on Previous Sections Number Remarks & Identify Sections.
Agene (all acomplete)	Section 8	
Check If No Remarks:		
Section 1 Tower SteelTower could not be fully tape dropped	due to 5 bay FM An	ntenna. Leg size of 2.0"OD 0'-160' Level.
Leg change to 2.5" OD from 160' to 180'. Leg appears to go b	ack to 2.0" for last to	wo sections. Bent diag. 6' NE Face.
Section 2 &3 Guy wires are 3/8" x 1 x 7 EHS. Guys are rusted	d-surface to pitting /	Preforms surface rust / No ice sheilds on preforms /
No guy wire / Anchor head grounding. 4th guy at 240 anchor	has wire tie in place	of cotter pin on turn buckle. No safety "8" 's
on anchors. Anchor heads at 240 degrees are buried. Anchor	at 0 degrees has tow	anchor heads, 4th guy attached to second anchor.
Anchor points are overgrown. Saddle bolts on guys are rusted	/ pitted on all points	. 3rd guy at 240 degrees is tension light.
	2	
	· · · · · · · · · · · · · · · · · · ·	·
		List Below Any Recommended Repairs Number Remarks & Identify Sections.
Recommended Repairs		Number Remarks & Identity Sections.
	Section 9	
Check If No Recommended Repairs:		
Section 2 & 3 Recommend clearing anchor points for services	bility and installing	ice shields on preforms. Grounding guys w/#27
and 8' ground rod for each anchor. Replace wire tie w/cotter p	in @ 240 degree and	chor. Install safety "8" 's on all anchors.
Replace saddle bolts on guy wires. Bring 3rd guy up to tension	<u>n.</u>	
	·····	
	· · · · · · · · · · · · · · · · · · ·	

			List Below Any Work Performed
,	Performed	Section 10	
Complete Tower / Mappi	ng Inspection	•	
		7-10	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· ·		
	•		
			List Below Any Materials or Parts Used.
. ne Matel	ials Used		
		Section 11	
			
	•		-
			· · · · · · · · · · · · · · · · · · ·
Inspectors Signature: Rudy	/ Stauder	Reviewed By: Scott M	[usacchio
Tech Number: <u>T-4</u>	Date: <u>8/22/03</u>	Tech Number: M-5	Date: <u>8/25/03</u>

APPENDIX B: Model Results (Prior to Retrofit)

EDITE	Job	-	Page	
ERITower		New Windsor	1 of 18	
The Chazen Companies	Project		Date	
ne Chuzen Compunies 20 Gurley Avenue	-	10381.00	09:46:29 09/10/03	
Troy, New York 121823	Client		Designed by	
Phone: (518) 235-8050 FAX: (518) 235-8051		Cellular One	kellyp	

Load Combinations

Comb. No.		Description
1	Dead Only	
2	Dead+Wind 0 deg - No Ice+Guy	
3	Dead+Wind 90 deg - No ice+Guy	
4	Dead+Wind 180 deg - No Ice+Guy	
5	Dead+Ice+Temp+Guy	
6	Dead+Wind 0 deg+lce+Temp+Guy	•
7	Dead+Wind 90 deg+Ice+Temp+Guy	
8	Dead+Wind 180 deg+lce+Temp+Guy	
9	Dead+Wind 0 deg - Service+Guy	•
10	Dead+Wind 90 deg - Service+Guy	
11	Dead+Wind 180 deg - Service+Guy	

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force lb	Major Axis Moment lb-fi	Minor Axi Moment lb-ft
- C1	220 - 200	Leg	Max Tension	4	4559.53	-32.75	22.88
Tl	. 220 - 200 .	LEE	Max. Compression	6	-6928.25	-32.73 24.46	-10.47
			Max. Compression Max. Mx	7	4172.76	-216.87	-10.47 78.53
			Max. My	8	-4747.24	-210.67 -1.86	-238.63
			Max. My Max. Vy	7	-1368.82	-216.85	-236.03 78.51
			Max. Vx	8	-1409.33	-210.85	-238.63
		Diagonal	Max Tension		-1409.33 803.03	0.00	0.00
		Diagonal	• • • • • • • • • • • • • • • • • • • •	3 2			0.00
			Max. Compression		-783.72	0.00	
			Max. Mx	6	557.69	1.61	0.00
			Max. My	6	56.97	0.00	-0.06
			Max. Vy	6	-2.48	0.00	0.00
		- '	Max. Vx	6	0.10	0.00	0.00
		Top Girt	Max Tension	2	182.90	0.00	0.00
			Max. Compression	4	-188.00	0.00	0.00
			Max. Mx	5	-0.20	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	6	2256.81	0.00	0.00
			Max. Compression	4	-54.78	0.00	0.00
•			Max. Mx	5	354.92	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	6	19.50	0.00	0.00
			Max. Compression	7	-19.55	0.00	0.00
			Max. Mx	5	0.52	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Guy A	 Bottom Tension 	8	10197.07		
			Top Tension	8	10353.87		
			Top Cable Vert	8	9380.43		
			Top Cable Norm	8	4382.94		
			Top Cable Tan	8	6.10		•
			Bot Cable Vert	8	-9047.79		
			Bot Cable Norm	8	4702.94		
			Bot Cable Tan	8	6.10		
		Guy B	Bottom Tension	6	8292.03		
		- •	Top Tension	6	8445.74		
			Top Cable Vert	6	7408.56		
			Top Cable Norm	6	4054.60		
			Top Cable Tan	6	63.98		
			Bot Cable Vert	6	-7130.25		

Job		Page
	New Windsor	2 of 18
Project		Date
	10381.00	09:46:29 09/10/03
Client		Designed by
	Cellular One	kellyp

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Ax
210.	,-	-77-	÷	Comb.	. <i>lb</i>	. lb-fl	lb-ft
			Bot Cable Norm	6	4221.15		
			Bot Cable Tan	6	314.80		
		Guy C	Bottom Tension	7	9885.87		
		•	Top Tension	7	10041.14		
			Top Cable Vert	7	8868.70		
			Top Cable Norm	7	4708.52		
			Top Cable Tan	7	20.18		
			Bot Cable Vert	7	-8536.38		
			Bot Cable Norm	7	4981.01		
			Bot Cable Tan	7	224.14		
T2	200 - 180	Leg	Max Tension	2	15500.02	-30.12	35.72
1,2	200 - 100	٠	Max. Compression	8	-27246.47	-44 .07	110.18
			Max. Mx	6	-5412.27	-126.13	-59.24
			Max. My	8 .	-6172.73	-27.84	113.11
			Max. Vy	3	-484.71	-29.35	18.48
			Max. Vx	2	567.44	-29.33 47.57	54.39
		Dinamal		7			
		Diagonal	Max Tension		2080.13	0.00	0.00
			Max. Compression	7	-2261.45	0.00	0.00
			Max. Mx	6	-1803.25	1.61	0.00
	`		Max. My	6	429.55	0.00	-0.06
	•	•	Max. Vy	6	-2.49	0.00	0.00
			Max. Vx	6	0.10	0.00	0.00
		Top Girt	Max Tension	7	1098.47	0.00	0.00
			Max. Compression	4	-548.98	0.00	0.00
			Max. Mx	5	91.09	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	2	527.23	0.00	0.00
			Max. Compression	3	-508.35	0.00	0.00
			Max. Mx	5	-3.27	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	6	103.72	0.00	0.00
			Max. Compression	4	-43.16	0.00	0.00
		*	Max. Mx	5	17.57	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
T3	180 - 160	Leg	Max Tension	2	20132.96	-76.34	-68.59
		_	Max. Compression	8	-32651.04	-127.49	21.12
			Max. Mx	7	-20724.93	245.60	-48.71
			Max. My	8	-23689.04	30.41	275.83
			Max. Vy	7	559.48	67.30	12.92
			Max. Vx	6	-702.41	-24.95	-75.54
		Diagonal	Max Tension	. 4	2163.00	0.00	0.00
		0	Max. Compression	6	-2387.98	0.00	0.00
			Max. Mx	6	1027.06	1.60	0.00
			Max. My	6	444.22	0.00	-0.06
			Max. Vy	6	-2.49	0.00	0.00
	•		Max. Vx	6	0.10	0.00	0.00
		Top Girt	Max Tension	3	567.92	0.00	0.00
		Top Our	Max. Compression	2	-552.22	0.00	0.00
			Max. Mx	5	20.00	2.52	0.00
				5		0.00	
		D-44 Ci-4	Max. Vy		-6.04		0.00
		Bottom Girt	Max Tension	6	908.89	0.00	0.00
			Max. Compression	4	-825.90	0.00	0.00
			Max. Mx	5	-17.67	1.01	0.00
		1010:	Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	6	230.72	0.00	0.00
			Max. Compression	4	-126.09	0.00	0.00
			Max. Mx	5	30.70	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
T4	160 - 140	Leg	Max Tension	4	10199.63	-12.27	221.23
			Max. Compression	6	-30019.42	-30.02	101.00
			Max. Mx	7	5716.09	267.30	-50.22

Job .		Page
	New Windsor	3 of 18
Project		Date
	10381.00	09:46:29 09/10/03
Client		Designed by
	Cellular One	kellyp

ection	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
No.	ft	Type		Loed Comb		Moment	Moment
			New Mee	Comb.	lb	<u>lb-ft</u>	<u>lb-fl</u>
			Max. My	8	6628.52	-35.09	258.95
			Max. Vy	7	1219.57	-37.40	-1.60
		Discount	Max. Vx	8	1252.42	-5.22	-53.98
		Diagonal	Max Tension	. 8	3064.41	0.00	0.00
			Max. Compression	6	-3306.99	0.00	0.00
			Max. Mx	6	1881.98	1.60	0.00
			Max. My	6	373.40	0.00	-0.06
			Max. Vy	6	-2.50	0.00	0.00
			Max. Vx	6	-0.10	0.00	0.00
		Top Girt	Max Tension	8	840.23	0.00	0.00
			Max. Compression	6	-846.49	0.00	0.00
			Max. Mx	5	42.42	1.83	0.00
	•		Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	6	1575.92	0.00	0.00
	•		Max. Compression	8	-1342.14	0.00	0.00
			Max. Mx	5	68.05	1.01	0.00
			. Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	8	90.50	0.00	.0.00
	*		Max. Compression	3	-3.99	0.00	0.00
			Max. Mx	5	35.06	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
T5	140 - 120	Leg	Max Tension	4	10196.88	-1.49	-54.58
	•	•	Max. Compression	6	-35426.64	-24.51	91.94
			Max. Mx	7 .	5710.00	-342.53	47.02
			Max. My	6	-30022.62	-55.57	398.04
			Max. Vy	7	1221.31	-342.53	47.02
			Max. Vx	8	1254.58	24.64	-367.47
		Diagonal	Max Tension	7	968.34	0.00	0.00
		2.000	Max. Compression	i	-987.40	0.00	0.00
			Max. Mx	7	-280.76	1.60	0.00
			Max. My	6	310.29	0.00	-0.06
			Max. Vy	7	-2.49	0.00	0.00
			Max. Vx	6	0.09	0.00	0.00
		Top Girt	Max Tension	6	2874.23	0.00	0.00
		Top Girt	Max. Compression	4	-96.93	0.00	0.00
			Max. Mx	5	481.68	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	6	362.75	0.00	0.00
		Domain Gift	Max. Compression	7	-356.63	0.00	0.00
				5			
			Max, Mx	5 5	27.51	1.01	0.00
		Mid Cia	Max. Vy		-2.41	0.00	0.00
		Mid Girt	Max Tension	. 7	99.38	0.00	0.00
			Max. Compression	1.	0.00	0.00	0.00
			Max. Mx	5	34.37	1.01	0.00
		0	Max. Vy	5	-2.41	0.00	0.00
		Guy A	Bottom Tension	8	9076.01		
			Top Tension	8	9186.58		
		•	Top Cable Vert	8	7957.42	•	
			Top Cable Norm	8	4590.51		
			Top Cable Tan	8	3.84		
			Bot Cable Vert	8	-7718.47		
			Bot Cable Norm	8	4774.84		
			Bot Cable Tan	8	3.84		
		Guy B	Bottom Tension	6	6914.66		
		•	Top Tension	6	7024.01		
		•	Top Cable Vert	6	5526.92		
			Top Cable Norm	6	4334.26		
			Top Cable Tan	6	63.94		
			Bot Cable Vert	6	-5308.79		
			Bot Cable Norm	6	4426.10		

Job		Page
	New Windsor	4 of 18
Project		Date
	10381.00	09:46:29 09/10/03
Client		Designed by
	Cellular One	kellyp

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Ax Moment
				Comb.	<i>lb</i>	lb-fi	lb-ft
		Guy C	Bottom Tension	7	7589.70		
		•	Top Tension	7	7699.92		
			Top Cable Vert	7	6126.60		
			Top Cable Norm	7	4664.07		
	•		Top Cable Tan	7	6.65		
			Bot Cable Vert	7	-5871.66		
			Bot Cable Norm	7	4807.40		
			Bot Cable Tan	7	126.48		
T6	120 - 100	Leg	Max Tension	8	20654.24	-8.20	120.53
		,	Max. Compression	6	-56662.87	-67.26	157.07
			Max. Mx	7	17647.88	162.04	-36.21
			Max. My	6	-35429.71	-34.71	178.33
			Max. Vy	7	890.93	-60.53	-9.70
			Max. Vx	6	-861.13	-32.36	48.99
		Diagonal	Max Tension	8	2222.91	0.00	0.00
			Max. Compression	6	-2271.95	0.00	0.00
•			Max. Mx	7	505.61	1.59	0.00
	•		Мах. Му	6	<i>377.</i> 76	0.00	-0.05
			Max. Vy	7	-2.48	0.00	0.00
			Max. Vx	6	-0.08	0.00	0.00
		Top Girt	Max Tension	7	416.06	0.00	0.00
		-	Max. Compression	2	-303.89	0.00	0.00
			Max. Mx	5	4.83	1.83	0.00
-			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	6	1154.75	0.00	0.00
			Max. Compression	8	-937.65	0.00	0.00
			Max. Mx	5	-40.29	1.01	0.00
	*		Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	8	120.05	0.00	0.00
		1.2.0	Max. Compression	ī	0.00	0.00	0.00
			Max. Mx	5	46.42	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
17	100 - 80	Leg	Max Tension	8	20651.10	-8.95	-85.91
• •			Max. Compression	6	-56666.08	-85.81	333.30
			Max. Mx	7	17641.74	-283.83	16.74
			Max. My	6	-56666.08	-85.81	333.30
			Max. Vy	7	893.87	-283.83	16.74
			Max. Vx	6	-862.87	2.39	264.54
		Diagonal	Max Tension	4	1490.83	0.00	0.00
		Diagonal	Max. Compression	2	-1508.75	0.00	0.00
			Max. Mx	7	-1393.08	1.58	0.00
			Max. My	6	352.74	0.00	-0.04
		•		7	-2.46	0.00	0.00
			Max. Vy Max. Vx	6	-0.06	0.00	0.00
		Ton Circ					
		Top Girt	Max Tension	6	2382.34	0.00	0.00
			Max. Compression	l e	0.00	0.00	0.00
			Max. Mx	5	795.50	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	6	339.94	0.00	0.00
			Max. Compression	7	-343.51	0.00	0.00
			Max. Mx	5	39.67	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	7	143.75	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	5	54.05	1.01	0.00
			. Max. Vy	5	-2.41	0.00	0.00
		Guy A	Bottom Tension	8	6958.78		
		•	Top Tension	8	7038.50		
			Top Cable Vert	8	5478.74		
			Top Cable Norm	8	4418.58		
			Top Cable Tan	. 8	1.81		

Job		Page
	New Windsor	5 of 18
Project		Date
	10381.00	09:46:29 09/10/03
Client		Designed by
	Cellular One	keliyo

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
•		7.		Comb.	lЬ	lb-ft	lb-ft
			Bot Cable Vert	8	-5295.72		
	•		Bot Cable Norm	8	4514.42		
			Bot Cable Tan	8	1.81		
		Guy B	Bottom Tension	6	4844.38		
		•	Top Tension	6	4923.66		
			Top Cable Vert	6	3328.48		
	•		Top Cable Norm	6	3627.40		
			Top Cable Tan	6	75.00		
			Bot Cable Vert	6	-3151.80		
			Bot Cable Norm	6	3676.96		
			Bot Cable Tan	6	119.11		
		Guy C	Bottom Tension	7	6123.66		
		•	Top Tension	7	6203.27		
			Top Cable Vert	7	4247.12		
			Top Cable Norm	7	4521.29		
			Top Cable Tan	7	21.84		
			Bot Cable Vert	7	-4048.93		
			Bot Cable Norm	7	4593.53		
			Bot Cable Tan	. 7	69.71		
T8	80 - 60	Leg	Max Tension	4	2009.27	-61.18	45.04
			Max. Compression	6	-44593.15	-18.17	35.72
			Max. Mx	7	-38780.89	-116.45	5.32
			Max. My	6	-42218.86	59.12	116.70
			Max. Vy	7	-321.24	18.16	-4.39
			Max. Vx	4	253.82	2.25	-44.55
		Diagonal	Max Tension	6	785.57	0.00	0.00
			Max. Compression	7	-1009.43	0.00	0.00
			Max. Mx	7	-1003.87	1.57	0.00
			Max. My	6	246.83	0.00	-0.03
			Max. Vy	7	2.45	0.00	0.00
			Max. Vx	6	0.04	0.00	0.00
		Top Girt	Max Tension	7	425.72	0.00	0.00
			Max. Compression	2	-259.71	0.00	0.00
			Max. Mx	5	4.62	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	2	350.39	0.00	0.00
			Max. Compression	4	-292.75	0.00	0.00
			Max. Mx	5	43.90	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	6	132.06	0.00	0.00
	•		Max. Compression	1	0.00	0.00	0.00
			Max. Mx	5	57.61	1.01	0.00
	•	•	Max. Vy	5	-2.41	0.00	0.00
T9	60 - 40	Leg	Max Tension	4	4172.13	-6.87	-27.75
• •	•		Max. Compression	6	-43820.49	74.90	138.66
			Max. Mx	7	-32412.88	-1.53.01	-95.70
			Max. My	6	-34404.76	-82.10	206.21
			Max. Vy	7	-551.80	-95.88	-15.85
			Max. Vx	6	527.40	-82.10	206.21
		Diagonal	Max Tension	2	1635.14	0.00	0.00
			Max. Compression	2	-1788.43	0.00	0.00
			Max. Mx	7	-104.12	1.56	0.00
			Max. My	6	225.68	0.00	-0.02
			Max. Vy	7	2.43	0.00	0.02
			Max. Vx	6	0.03	0.00	0.00
		Top Girt	Max Tension	4	356.08	0.00	0.00
		TOP GITT	Max. Compression	2			
			Max. Compression Max. Mx	5	-286.67 1.95	0.00	0.00
			Max. Mx Max. Vy	5	-4.38	1.83	0.00
			max. vy	د	~ 4.⊅ŏ	0.00	0.00
		Bottom Girt	Max Tension	6	561.39	0.00	0.00

Job		Page
·	New Windsor	6 of 18
Project		Date
	10381.00	09:46:29 09/10/03
Client .		Designed by
	Cellular One	kellyp

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment	
		~~		· Comb.	lb	lb-ft	lb-fi	
			Max. Mx	6	299.92	1.01	0.00	
			Max. Vy	6	-2.41	0.00	0.00	
		Mid Girt	Max Tension	8	2143.53	0.00	0.00	
			Max. Compression	1	0.00	0.00	0.00	
			Max. Mx	5	1082.36	1.01	0.00	
			Max. Vy	5	-2.41	0.00	0.00	
		Guy A	Bottom Tension	8	4324.70	4.55		
		44,	Top Tension	8	4364.92			
			Top Cable Vert	8	2311.80			
			Top Cable Norm	8	3702.45			
			Top Cable Tan	8	0.41			
			Bot Cable Vert	8	-2202.49			
			Bot Cable Norm	8	3721.83			
	1							
		C B	Bot Cable Tan	8	0.41			
		Guy B	Bottom Tension	6	2858.67			
	C.		Top Tension	6	2898.86			
			Top Cable Vert	6	1235.84			
			Top Cable Norm	6	2621.40			
			Top Cable Tan	6	65.60			
			Bot Cable Vert	6	-1107.79			
			Bot Cable Norm	6	2634.38			
			Bot Cable Tan	6	69.71			
		Guy C	Bottom Tension	7	3524.75			
		•	Top Tension	7	3564.98			
			Top Cable Vert	7	1541.29	•		
			Top Cable Norm	7	3214.48			
			Top Cable Tan	7	24.10			
			Bot Cable Vert	7	-1409.77			
			Bot Cable Norm	'n	3230.41			
			Bot Cable Tan	7	28.85			
017	40 - 20	Leg	Max Tension	1	0.00	0.00	0.00	
110	40 - 20	Leg	Max. Compression	6	-34410.79	-6.66	-58.01	
			Max. Mx	7		179.35	19.12	
				6	-10557.08			
			Max. My		-10834.99	-59.34	-131.05	
			Max. Vy	7	-550.09	41.94	1.64	
		 - 1	Max. Vx	6	530.44	-44 .68	74.48	
		Diagonal	Max Tension	6	1467.95	0.00	0.00	
			Max. Compression	7	-1654.05	0.00	0.00	
			Max. Mx	7	-1648.44	1.55	0.00	
			Max. My	8	-279.13	0.00	0.01	
			Max. Vy	7	-2.42	0.00	0.00	
			Max. Vx	8	-0.02	0.00	0.00	
• •		Top Girt	Max Tension	7	714.80	0.00	0.00	
			Max. Compression	2	-472.41	0.00	0.00	
			Max. Mx	6	-231.33	1.83	0.00	
			Max. Vy	6	-4.38	0.00	0.00	
		Bottom Girt	Max Tension	6	346.21	0.00	0.00	
			Max. Compression	7	-273.40	0.00	0.00	
			Max. Mx	5	19.17	1.01	0.00	
			Max. Vy	5	-2.41	0.00	0.00	
		Mid Girt	Max Tension	7	139.43	0.00	0.00	
			Max. Compression	i	0.00	0.00	0.00	
			Max. Mx	6	107.51	1.01	0.00	
			Max. Vy	6	-2.41	0.00	0.00	
ГП	20 - 2.333	l ea	Max Tension	1	0.00	0.00	0.00	
	درد. ۲ - ۲۵	Leg						
			Max. Compression	6	-21583.34	-4.55	-22.86	
			Max. Mx	7	-19578.53	-769.01	420.40	
	•		Max. My	8	-18349.97	39.63	-826.66	
			Max. Vy	7	3536.96	-769.01	420.40	
			Max. Vx	6	3969.80	-87.91	166.86	
		Diagonal	Max Tension	4	761.11	0.00	0.00	

ERITOWER Job New Windsor The Chazen Companies 20 Gurley Avenue 10381.00

20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

	New Windsor	7 of 18
Project		Date
	10381.00	09:46:29 09/10/03
Client	Cellular One	Designed by kellyp

Page

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
		·		Comb.	lЬ	lb-ft	lb-ft
			Max. Compression	7	-761.36	0.00	0.00
			Max. Mx	8	596.12	1.45	0.00
			Max. My	8	-377.70	0.00	0.01
			Max. Vy	8	-2.42	0.00	0.00
			Max. Vx	8	-0.01	0.00	0.00
		Top Girt	Max Tension	7	374.63	0.00	0.00
		• •	Max. Compression	6	-254.58	0.00	0.00
			Max. Mx	5	43.34	2.36	0.00
			Max. Vy	5	-5.65	0.00	0.00
		Bottom Girt	Max Tension	6	2582.10	0.90	0.00
			Max. Compression	1	0.00	0.00	0.00
•			Max. Mx	8	1989.45	2.36	0.00
			Max. Vy	8	-5.65	0.00	0.00
		Mid Girt	Max Tension	6	146.14	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	8	97.57	1.01	0.00
*			Max. Vy	8	-2.41	0.00	0.00
T12	2.333 - 0	Leg	Max Tension	1	0.00	0.00	0.00
		ū	Max. Compression	7	-21263.48	39.22	-127.35
			Max. Mx	7	-19670.79	876.18	18.88
			Max. My	4	-13037.63	25.66	-240.36
			Max. Vy	7	3679.41	-119.11	-1.71
			. Max. Vx	4	179.83	-95.16	15.40
		Top Girt	Max Tension	7	2348.09	0.00	0.00
		•	Max. Compression	1	0.00	0.00	0.00
			Max. Mx	· 6	2309.78	1.84	0.00
			Max. My	8	2218.41	0.00	0.38
-			Max. Vy	6	-4.94	0.00	0.00
			Max. Vx	8	-1.02	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lь
		Comb.			
Mast	Max. Vert	6	57465.09	30.30	80.02
	Max. H _x	2	45290.23	30.41	113.26
	Max. H ₂	7	56903.18	-158.60	259.61
	$Max. M_x$	1	0.00	25.96	-2.76
	Max. Mz	1	0.00	25.96	-2.76
	Max. Torsion	4	350.97	16.92	-324.26
	Min. Vert	1	25877.82	25.96	-2.76
	Min. H _x	10	30390.77	-182.88	41.92
	Min. H ₂	4	37216.25	16.92	-324.26
	Min. M _x	1	0.00	25.96	-2.76
	Min. Mz	1	0.00	25.96	-2.76
	Min. Torsion	2	-281.25	30.41	. 113.26
Guy C @ 110 ft Elev 0 ft Azimuth 240 deg	Max. Vert	4	-1673.15	-1627.40	728.06
, minan, 2 .0 as	Max. H.	4	-1673.15	-1627.40	728.06
	Max. H ₂	i	-19866.74	-15477.34	8417.18
•	Min. Vert	7	-19866.74	-15477.34	8417.18
	Min. H.	7	-19866.74	-15477.34	8417.18
	Min. H.	4	-1673.15	-1627.40	728.06
Guy B @ 113 ft Elev 0 ft Azimuth 120 deg	Max. Vert	3	-575.73	406.15	334.51

EDET	Job		Page
ERITower	New Windsor		8 of 18
The Chazen Companies 20 Gurley Avenue	Project	10381.00	Date 09:46:29 09/10/03
Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051	Client	Cellular One	Designed by kellyp

Location	Condition	Gov. Load Comb.	Vertical lb	Horizontal, X lb	Horizontal, 2 lb
	Max. H _x	6	-16698.63	12604.02	8086.37
	Max. H ₂	6	-16698.63	12604.02	8086.37
	Min. Vert	6	-16698.63	12604.02	8086.37
	Min. H _x		-575.73	406.15	334.51
	Min. Hz	3 3	-575.73	406.15	334.51
Guy A @ 97 ft Elev 0 ft	Max. Vert	9	-158.25	-0.04	-53.84
Azimuth 0 deg	Max. H.	9	-158.25	-0.04	-53.84
	Max. H,	á	-158.25	-0.04	-53.84
	Min. Vert	8	-9047.79	-6.10	-4702.94
	Min. H.	7	-5222.82	-310.20	-2582.60
•	Min. H.	8	-9047.79	-6.10	-4702.94
Guy A @ 83 ft Elev 0 ft	Max. Vert	2	-220.67	-0.08	-130.46
Azimuth 0 deg	Max. H.	9	-388.50	-0.01	-566.06
	Max. H,	2	-220.67	-0.08	-130.46
	Min. Vert	8	-15216.69	-6.05	-13011.10
	Min. H.	.7	-8253.67	-395.21	-6967.94
	Min. H _z	8	-15216.69	-6.05	-13011.10

Tower Mast Reaction Summary

Load Combination	Vertical	Shearz	Shear:	Overturning Moment, M _x	Overturning Moment, M <u>.</u>	Torque
	lb	lь	lь	lb-fi	lb-ft	lb-ft
Dead Only	25877.82	-25.96	2.76	0.00	0.00	2.79
Dead+Wind 0 deg - No	45290.23	-30.41	-113.26	. 0.00	0.00	281.25
Ice+Guy						
Dead+Wind 90 deg - No	43111.88	169.64	-216.55	0.00	0.00	-177.72
Ice+Guy				•		
Dead+Wind 180 deg - No	37216.25	-16.92	324.26	0.00	0.00	-350.97
Ice+Guy						
Dead+ice+Temp+Guy	36179.15	-25.09	-11.57	0.00	0.00	4.77
Dead+Wind 0	57465.09	-30.30	- 80.02	0.00	0.00	231.04
deg+Ice+Temp+Guy						
Dead+Wind 90	56903.18	158.60	-259.61	0.00	0.00	-171.37
deg+Ice+Temp+Guy						
Dead+Wind 180	52 9 92.30	-22.02	277.19	0.00	0.00	-250.49
deg+lce+Temp+Guy						
Dead+Wind 0 deg -	30805.72	-28.61	-176.89	0.00	0.00	195.46
Service+Guy						
Dead+Wind 90 deg -	30390.77	182.88	-41.92	0.00	0.00	-129.26
Service+Guy						
Dead+Wind 180 deg -	29104.79	-12.56	209.68	0.00	0.00	-208.31
Service+Guy						

Solution Summary

	Su	m of Applied Force.	5		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PΥ	PZ	% Error
Comb.	<u>lb</u>	lb	lь	lЬ	1b	lb	
1	0.00	-14277.72	0.00	-0.12	14277.72	1.15	0.003%
2	2.84	-14324.00	-13939.51	-2.80	14323.91	13936.71	0.014%
3	13068.65	-14276.39	-2.07	-13066.06	14276.30	3.87	0.016%

The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor	9 of 18
Project		Date
	10381.00	09:46:29 09/10/03
Client		Designed by
	Cellular One	keliyp

	Su	m of Applied Force	5		Sum of Reaction	2.2	
Load	PX	PY	PZ.	PX	PΥ	PZ	% Error
Comb.	_ <i>lb</i>	lb	lb	lЬ	lb		
4	-2.84	-14231.44	12872.90	5.62	14231.43	-12872.88	0.014%
5	0.00	-22136.42	0.00	0.68	22136.42	0.44	0.004%
6	7.81	-22263.71	-15543.39	- 7 .77	22263.56	15539.91	0.013%
7	15290.85	-22132.76	-5.68	-15287.76	22132.63	7.94	0.014%
8	-7.81	-22009.14	15453.15	11.20	22009.14	-15453.13	0.013%
9	1.45	-14301.34	-7111. 9 9	-1.43	14301.31	7110.20	0.011%
10	6667.68	-14277.04	-1.05	-6 666.47	14277.02	1.93	0.009%
11	-1.45	-14254.11	6567.80	2.67	14254.10	-6567.66	0.008%

Non-Linear Convergence Results

Load Combination.	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	12	0.0000001	0.00000001
2	Yes	49	0.00000001	0.00013169
3	Yes	52	0.00011377	0.00013946
4	Yes	60	0.00014595	0.00010761
5	Yes	19	. 0.0000001	0.00000001
6	Yes	51	0.00010258	0.00013111
7	Yes	55	0.00011934	0.00014318
8	Yes	53	0.00014341	0.00011488
9	Yes	43	0.00014181	0.00012283
10	Yes	46	0.00013108	0.00010481
11	Yes	33	0.00013917	0.0000001

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	deg	deg
Ti	220 - 200	17.426	9	0.4753	0.8314
T2	200 - 180	15.456	9	0.4634	0.8852
T3	180 - 160	13.454	9	0.5367	0.8059
T4	160 - 140	11.001	9	0.6338	0.7035
T5	140 - 120	8.207	9	0.6555	0.6226
T6	120 - 100	5.595	9	0.5855	0.5648
T7	100 - 80	3.382	9	0.4346	0.4826
T8	80 - 60	1.953	9	0.2739	0.4000
T9	60 - 40	1.044	11	0.1742	0.3193
T10	40 - 20	0.628	11	0.0769	0.2400
T11	20 - 2.333	0.347	11	0.0736	0.1667
T12	2.333 - 0	0.043	11	0.0876	0.1004

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilı	Twist	Radius of Curvature
ft		Comb.	in	deg	deg	ft
220.00	RMU (Remote Units)	9	17.426	0.4753	0.8314	193237
210.00	6810 Circular Polarized FM 5-bay	9	16.435	0.4618 -	0.8710	96619
205.00	6810 Circular Polarized FM 5-bay	9	15.943	0.4598	0.8828	64412

TO FORTON	Job	Page
ERITower	New Windsor	10 of 18
The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051	Project 10381.00	Date 09:46:29 09/10/03
	Client Cellular One	Designed by keliyp

Elevation	Appurtenance ·	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	deg	deg	ft
200.25	Guy	9	15.481	0.4630	0.8854	68628
200.00	6810 Circular Polarized FM 5-bay	9	15.456	0.4634	0.8852	72150
195.00	6810 Circular Polarized FM 5-bay	9	14.973	0.4739	0.8760	63328
190.00	6810 Circular Polarized FM 5-bay	9	14.486	0.4906	0.8575	19567
175.00	(3) DB844H90E-XY w/Pipe Mount	9.	12.890	0.5631	0.7790	8673
173.00	(3) DB844H90E-XY w/Pipe Mount	9	12.655	0.5738	0.7684	8908
171.00	(3) DB844H90E-XY w/Pipe Mount	9	12.414	0.5843	0.7580	9156
163.00	PD220	9	11.401	0.6224	0.7179	10341
157.50	PD220	9	10.660	0.6417	0.6919	13894
152.00	PD220	9	9.894	0.6538	0.6676	30899
146.50	PD220	9	9.117	0.6587	0.6454	30130
141.00	PD220	9	8.345	0.6566	0.6258	13687
139.75	Guy	9	8.172	0.6552	0.6218	12898
118.00	Flash Beacon Lighting	9	5.349	0.5734	0.5578	13756
117.50	PR-950	9	5.288	0.5702	0.5560	13168
116.00	PR-950	9	5.107	0.5604	0.5504	11525
114.50	PR-950	9	4.928	0.5502	0.5446	10169
99.75	Guy	9	3.360	0.4324	0.4815	5028
50.00	Guy	11	0.807	0.1194	0.2782	12686

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	fi	in	Comb.	deg	deg
TI	220 - 200	54.264	6	1.7121	1.4232
T2	200 - 180	47.114	6	1.6878	1.5286
T3	180 - 160	39.901	6	1.8271	1.3841
T4	160 - 140	31.857	6	1.9961	1.1946
T5	140 - 120	23.354	6	1.9562	1.0472
Т6	120 - 100	15.663	6	1.7016	0.9529
T 7	100 - 80	9.658	2	1.2860	0.8106
T8	80 - 60	5.866	2	0.8377	0.6709
Т9	60 - 40	3.224	2	0.5105	0.5341
T10	40 - 20	1.654	2	0.2622	. 0.4013
T11	20 - 2.333	0.793	2	0.1880	0.2777
T12	2.333 - 0	0.095	2	0.1933	0.1658

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	deg	deg	ft
220.00	RMU (Remote Units)	6	54.264	1.7121	1.4232	100459
210.00	6810 Circular Polarized FM 5-bay	6	50.677	1.6855	1.4996	50229
205.00	6810 Circular Polarized FM 5-bay	6	48.891	1.6813	1.5230	33486
200.25	Guy	6	47.202	1.6872	1.5288	35694
200.00	6810 Circular Polarized FM 5-bay	6	47.114	1.6878	1.5286	37547
195.00	6810 Circular Polarized FM 5-bay	6	45.344	1.7078	1.5125	24729
190.00	6810 Circular Polarized FM 5-bay	6	43.566	1.7395	1.4789	9044
175.00	(3) DB844H90E-XY w/Pipe Mount	6	37.978	1.8770	1.3344	4341
173.00	(3) DB844H90E-XY w/Pipe Mount	6	37.191	1.8968	1.3149	4500
171.00	(3) DB844H90E-XY w/Pipe Mount	6	36.394	1.9160	1.2956	4672
163.00	PD220	6	33.118	1.9802	1.2212	5534

EDEC	Job		Page
ERITower		New Windsor	11 of 18
The Chazen Companies 20 Gurley Avenue	Project	. 10381.00	Date 09:46:29 09/10/03
Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051	Client	Cellular One	Designed by kellyp

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ſŧ		Comb.	in	<i>deg</i>	deg	fi
157.50	PD220	- 6	30.794	2.0048	1.1730	7924
152.00	PD220	6	28.437	2.0094	1.1280	27815
146.50	PD220	6	26.081	1.9953	1.0875	8924
141.00	PD220	6	23.767	1.9637	1.0528	4812
139.75	Guy	6	23.251	1.9542	1.0459	4528
118.00	Flash Beacon Lighting	6	. 14.953	1.6659	0.9411	4017
117.50	PR-950	6	14.777	1.6568	0.9380	3920
116.00	PR-950	6	14.255	1.6286	0.9284	3629
114 <i>.</i> 50	PR-950	6	13.740	1.5997	0.9183	3362
99.75	Guy	2	9.601	1.2802	0.8087	2044
50.00	Guy	2	2.316	0.3861	0.4711	3867

Guy Design Data:

Section No.	Elevation	Size	Initial Tension	Breaking Load	Actual T	Allowable T _a	Required S.F.	Actual S.F.
210.	ft ·		lb	lb	Îb	· lb	D.1 ·	
Tl	200.25 (A) (471)	3/8 EHS	1540.00	15399.96	10353.90	7700.00	2.000	1.487 X
	200.25 (B) (470)	3/8 EHS	1540.00	15399.96	8445.74	7700.00	2.000	1.823 🗶
	200.25 (C) (469)	3/8 EHS	1540.00	15399.96	10041.10	7700.00	2.000	1.534 X
T5	139.75 (A) (474)	3/8 EHS	1540.00	15399.96	9186.58	7700.00	2.000	1.676 🗶
	139.75 (B) (473)	3/8 EHS	1540.00	15399.96	7024.01	7700.00	2.000	2.192
	139.75 (C) (472)	3/8 EHS	492.80	15399.96	7699.92	7700.00	2.000	2.000
T7	99.75 (A) (477)	3/8 EHS	1540.00	15399.96	7038.50	7700.00	2.000	2.188
	99.75 (B) (476)	3/8 EHS	1540.00	15399.96	4923.66	7700.00	2.000	3.128
	99.75 (C) (475)	3/8 EHS	1540.00	15399.96	6203.27	7700.00	2.000	2.483
Т9	50.00 (A) (480)	3/8 EHS	1540.00	15399.96	4364.92	7700.00	2.000	3.528
	50.00 (B) (479)	3/8 EHS	1540.00	15399.96	2898.86	7700.00	2.000	5.312
	50.00 (C) (478)	3/8 EHS	1540.00	15399.96	3564.98	7700.00	2.000	4.320

Compression Checks

Leg Design Data (Compression):

Section No.	Elevation	Size	L	L,	Kl/r	Ması Stability	Fa	A . 1	Actual P	Allow.	Ratio P
	ft		ft	ft		Index	ksi	in²	lb	lb	P_a
TI	220 - 200	2	20.00	1.98	94.8 K=2.00	1.00	13.625	3.1416	-6928.25	42805.50	0.162
T2	200 - 180	2	20.00	1.98	94.8 K=2.00	1.00	13.625	3.1416	-27246.50	42805.50	0.637

EDIT	Job		Page
ERITower		New Windsor	12 of 18
The Chazen Companies 20 Gurley Avenue	Project	10381.00	Date .09:46:29 09/10/03
Troy. New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051	Client	Cellular One	Designed by kellyp

Section No.	Elevation	Size	L	L_u	Κl/r	Most Stability	F_{\bullet}	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		Index	ksi	in²	lb	lb	Pa
T3	180 - 160	2 1/2	20.00	1.95	74.9 K=2.00	0.99	15.707	4.9087	-32651.00	77100.00	0.423
T4	160 - 140	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-30019.40	43265.70	0.694
T5	140 - 120	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-35426.60	43265.70	0.819
Т6	120 - 100	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-56662.90	43265.70	1.310
T7	100 - 80	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-56666.10	43265.70	1.310
T8	80 - 60	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-44593.10	43265.70	1.031
T9	60 - 40	. 2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-43820.50	43265.70	1.013
T10	40 - 20	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-34410.80	43265.70	0.795
Til	20 - 2.333	2	17.67	1.72	82.4 K=2.00	1.00	15.086	3.1416	-21583.30	47393.60	0.455
T12	2.333 - 0	2	2.52	2.25	108.2 K=2.00	1.00	11.915	3.1416	-21263.50	37431.40	0.568

Diagonal Design Data (Compression):

Section No.	Elevation	Size	L	L	Kl/r	Fa	Ā	Actual P	Allow. Pa	Ratio P
	ft		ft	fi		ksi	in²	lb	lЬ	P.
TI	220 - 200	7/8	2.59	2.33	89.4 K=0.70	14.275	0.6013	-783.72	8583.93	0.091
T2	200 - 180	7/8	2.59	2.33	89.4 K≂0.70	14.275	0.6013	-2261.45	8583.93	0.263
T 3	180 - 160	7/8	2.57	2.25	86.3 K≕0.70	14.641	0.6013	-2387.98	8803.68	0.271
T4	160 - 140	7/8	2.57	2.31	88.7 K=0.70	14.353	0.6013	-3306.99	8630.69	0.383
T 5	140 - 120	7/8	2.57	2.31	88.7 K≃0.70	14.353	0.6013	-987.40	8630.69	0.114
T6	120 - 100	7/8	2.57	2.31	88.7 K=0.70	14.353	0.6013	-2271.95	8630.69	0.263
T7	100 - 80	7/8	2.57	2.31	88.7 K≔0.70	14.353	0.6013	-1508.75	8630.69 -	0.175
T8	80 - 60	7/8	2.57	2.31	88.7 K≕0.70	14.353	0.6013	-1009.43	8630.69	0.117
Т9	60 - 40	7/8	2.57	2.31	88.7 K=0.70	14.353	0.6013	-1788.43	8630.69	0.207
T10	40 - 20	7/8	2.57	2.31	88.7 K=0.70	14.353	0.6013	-1654.05	8630.69	0.192
TH	20 - 2.333	7/8	2.39	2.16	84.3 K=0.71	14.867	0.6013	-761.36	8939.89	0.085

Page Job **ERITower** 13 of 18 **New Windsor** Project Date The Chazen Companies 10381.00 09:46:29 09/10/03 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051 Client Designed by Cellular One kellyp

Section	Elevation	Size	L	Lu	Kl/r	Fa	Λ	Actual	Allow.	Ratio
No.	ft		fi	ft		ksi	in²	P lb	P _a lb	$\frac{P}{P_a}$

Top Girt Design Data (Compression):

Section No.	Elevation	Size	L	Lu	KUr	Fa	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in²	lb	lb	P_a
TI	220 - 200	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-188.00	21654.80	0.009
T2	200 - 180	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-548.98	21654.80	0.025
·T3	180 - 160	1 1/2	1.67	1.46	46.8 K=1.00	18.631	1.7672	-552.22	32922.90	0.017
T4	160 - 140	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-846.49	21654.80	0.039
T5	140 - 120	1 1/4	1.67	1.50	57.7 K=1.00	17.645	1.2272	-96.93	21654.80	0.004
Т6	120 - 100	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-303.89	21654.80	0.014
T8	80 - 60	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-259.71	21654.80	0.012
T9	60 - 40	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-286.67	21654.80	0.013
T10	40 - 20	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-472.41	21654.80	0.022
T11	20 - 2.333	3x1/2	1.67	1.50	125.0 K=1.00	9.557	1.5000	-254.58	14335.10	0.018

Bottom Girt Design Data (Compression):

Section No.	Elevation	Size	L	L_{ν}	KUr	F_{\bullet}	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in²	lb	lb	P_a
TI	220 - 200	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-54.78	9170.23	0.006
T2	200 - 180	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-508.35	9170.23	0.055
T 3	180 - 160	7/8	1.67	1.46	80.1 K=1.00	15.347	0.6013	-825.90	9228.57	0.089
T4	160 - 140	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-1342.14	9170.23	0.146
T5	140 - 120	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-356.63	9170.23	0.039
T6	120 - 100	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-937.65	9170.23	0.102
T7	100 - 80	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-343.51	9170.23	0.037
T8	80 - 60	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-292.74	9170.23	0.032
T9	60 - 40	7/8	1.67	1.50	80.9	15.250	0.6013	-622.63	9170.23	0.068

Page Job **ERITower** 14 of 18 **New Windsor Project** Date The Chazen Companies 10381.00 09:46:29 09/10/03 20 Gurley Avenue Client Troy, New York 121823 Designed by Phone: (518) 235-8050 FAX: (518) 235-8051 Cellular One keliyp

Section No.	Elevation	Size	L	L_{ϵ}	KVr	F_{σ}	A	Actual P	Allow.	Ratio
710.	ft		ft	fi		ksi	in²	<u>lb</u>	<u>lb</u>	$\frac{1}{P_a}$
T10	40 - 20	7/8	1.67	1.50	K=0.98 80.9 K=0.98	15.250	0.6013	-273.40	9170.23	0.030

Mid Girt Design Data (Compression):

Section No.	Elevation	Size	L	L_{ν}	KVr	Fe	A	Actual P	Allow. P.	Ratio P
	ft		ft	ft	•	k si	in²	lb	lb	P_{σ}
Tl	220 - 200	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-19.55	9170.23	0.002
T2	200 - 180	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-43.16	9170.23	0.005
T3	180 - 160	7/8	1.67	1.46	80.1 K=1.00	15.347	0.6013	-126.09	9228.57	0.014
T4	160 - 140	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-3.99	9170.23	0.000

Tension Checks

Leg Design Data (Tension):

Section No.	Elevation	Size	L	L,	KVr	Fa	Λ	Actual P	Allow. P.	Ratio P
	ft		ft	ft		ksi	in³	· lb	lb	Pa
Ti	220 - 200	2	20.00	1.98	47.4	21.600	3.1416	4559.53	67858.40	0.067
T2	200 - 180	2	20.00	1.98	47.4	21.600	3:1416	15500.00	67858.40	0.228
T 3	180 - 160	2 1/2	20.00	1.95	37.4	21.600	4.9087	20133.00	106029.00	0.190
T4	160 - 140	. 2	20.00	1.95	46.8	21.600	3.1416	10199.60	67858.40	0.150
T5	140 - 120	2	20.00	1.95	46.8	21.600	3.1416	10196.90	67858.40	0.150
Т6	120 - 100	2	20.00	1.95	46.8	21.600	3.1416	20654.20	67858.40	0.304
T7	100 - 80	2	20.00	1.95	46.8	21.600	3.1416	20651.10	67858.40	0.304
T8	80 - 60	2	20.00	1.95	46.8	21.600	3.1416	2009.27	67858.40	0.030
Т9	60 - 40	2 .	20.00	1.95	46.8	21.600	3.1416	4172.13	67858.40	0.061

Diagonal Design Data (Tension):

EDIT.	Job		Page
ERITower		New Windsor	15 of 18
The Chazen Companies	Project		Date
20 Gurley Avenue	1	10381.00	09:46:29 09/10/03
Troy, New York 121823	Client		Designed by
Phone: (518) 235-8050 FAX: (518) 235-8051		Cellular One	keliyp

Section No.	Elevation	Size	L	L_z	Kl/r	Fa	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in²	lb	lb	Pe
Ti	220 - 200	7/8	2.59	2.33	127.7	21.600	0.6013	803.03	12988.50	0.062
T2	200 - 180	7/8	2.59	2.33	127.7	21.600	0.6013	2080.13	12988.50	0.160
T3	180 - 160	7/8	2.57	2.25	123.3	21.600	0.6013	2163.00	12988.50	0.167
T4	160 - 140	7/8	2.57	2.31	126.8	21.600	0.6013	3064.41	12988.50	0.236
T5	140 - 120	7/8	2.57	2.31	126.8	21.600	0.6013	968.34	12988.50	0.075
T6	120 - 100	7/8	2.57	2.31	126.8	21.600	0.6013	2222.91	12988.50	.0.171
17	100 - 80	7/8	2.57	2.31	126.8	21.600	0.6013	1490.83	12988.50	0.115
T8	80 - 60	7/8	2.57	2.31	126.8	21.600	0.6013	7 85.57	12988.50	0.060
T 9	60 - 40	7/8	2.57	2.31	126.8	21.600	0.6013	1635.14	12988.50	0.126
T10	40 - 20	7/8	2.57	2.31 .	126.8	21.600	0.6013	1467.95	12988.50	0.113
T11	20 - 2.333	7/8	2.39	2.16	118.3	21.600	0.6013	761.11	12988.50	0.059

Top Girt Design Data (Tension):

Section	Elevation	Size	L	L,	ΚVr	Fa	A	Actual P	Allow.	Ratio
No.	fi		ft	ft		ksi	in²	lь	P _a lb	$\frac{P}{P_a}$
Tl	220 - 200	1 1/4	1.67	1.50	57.7	21.600	1.2272	182.90	26507.20	0.007
T2	200 - 180	1 1/4	1.67	1.50	57. 7	21.600	1.2272	1098.47	26507.20	0.041
Т3	180 ~ 160	1 1/2	1.67	1.46	46.8	21.600	1.7672	567.91	38170.40	0.015
T4	160 - 140	1 1/4	1.67	1.50	57.7	21.600	1.2272	840.23	26507.20	0.032
T5 .	140 - 120	1 1/4	1.67	1.50	57.7	21.600	1.2272	2874.23	26507.20	0.108
Т6	120 - 100	1 1/4	1.67	1.50	57.7	21.600	1.2272	416.06	26507.20	0.016
T7	100 - 80	1 1/4	1.67	1.50	57.7	21.600	1.2272	2382.34	26507.20	0.090
T8	80 - 60	1 1/4	1.67	1.50	57.7	21.600	1.2272	425.72	26507.20	0.016
Т9	60 - 40	1 1/4	1.67	1.50	57.7	21.600	1.2272	356.08	26507.20	0.013
T10	40 - 20	1 1/4	1.67	1.50	57.7	21.600	1.2272	714.80	26507.20	0.027
TII	20 - 2.333	3x1/2	1.67	1.50	125.0	21.600	1.5000	374.63	32400.00	0.012
T12	2.333 - 0	3x1/2	1.49	1.32	110.1	21.600	1.5000	2348.09	32400.00	0.072

The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor	16 of 18
Project		Date
	10381.00	09:46:29 09/10/03
Client		Designed by
	Cellular One	kellyp

Section	Elevation	Size	L	L,	Kl/r	F.	A	Actual	Allow.	Ratio
No.	ft		ft	ft		ksi	in²	P lb	P. lb	<u>P</u>
				i						V

Bottom Girt Design Data (Tension):

Section	Elevation	Size	L	L,	KUr	F_a	A	Actual	Allow.	Ratio
No.	G		ft	ft		ksi	in²	P lb	P _a lb	P
	ft 220 - 200	7/8	1.67		82.5					P ₀
TI	220 - 200	1/0	1.07	1.50	62.3	21.600	0.6013	2256.81	12988.50	0.174
T2	200 - 180	<i>7/</i> 8	1.67	1.50	82.5	21.600	0.6013	527.23	12000 60	3/
12	200 - 100	110	1.07	1.50	02.3	21.000	0.0015	341.23	. 12988.50	0.041
Ta	180 - 160	7/8	1.67	1.46	80.2	21.600	0.6013	908.89	12000 50	0.070
T3	100 - 100	110	1.07	1.40	QU.Z	21.000	0.0013	, 300.03	12988.50	0.070
T-4	160 - 140	7/8	1.67	1.50	82.5	21.600	0.6013	1575.92	12988.50	0.121
T4	100 - 140	770	1.07	10	02.5	21.000	0.0013	13/3.92	12900.30	0.121
T5	140 - 120	7/8	1.67	1.50	82.5	21.600	0.6013	362.75	12988.50	0.028
13	140 - 120	770	1.07	1.20	Ģ2.J	21.000	0.0013	302.73	12790.30	0.026
Т6	120 - 100	7/8	1.67	1.50	82.5	21.600	0.6013	1154.75	12988.50	0.089
10	120 - 100	770	1.07	1,50	02.3	21.000	0.0013	1134.73	12700.30	1/
T7	100 - 80	7/8	1.67	1.50	82.5	21.600	0.6013	339.94	12988.50	0.026
17	100 - 60	776	1.07	1.50	02.3	21.000	0.0015	237.54	12900.50	V.020
T8	80 - 60	7/8	1.67	1.50	82.5	21.600	0.6013	350.39	12988.50	0.027
10	00 00	770	1.07	1.00	OL.J	21.000	0.0013	550.57	12300.30	1 0.027
Т9	60 - 40	<i>7/</i> 8	1.67	1.50	82.5	21.600	0.6013	561.39	12988.50	0.043
1,7	00 : 40	,,,	1.07	1.50	02.5	21.000	0.0015	301.37	12,00.50	V.043
T10	40 - 20	7/8	1.67	1.50	82.5	21.600	0.6013	346.21	12988.50	0.027
110	.0 20	***	,	1.00	U 2.0	21.000	4.0013	270.21	12,000.20	V
TII	20 - 2.333	3x1/2	1.67	1.50	125.0	21.600	1.5000	2582.10	32400.00	0.080
		200				-1.000	1.5000	2000.10	24-100.00	1/

Mid Girt Design Data (Tension):

Section No.	Elevation	Size	L	Lu	KUr	F _a	Á	Actual P	Allow. P _a	Ratio P
	ft		fi	ft		ksi	in²	lb	lb	P_{\bullet}
Ti	220 - 200	7/8	1.67	1.50	82.5	21.600	0.6013	19.50	12988.50	0.002
T2	200 - 180	7/8	1.67	1.50	82.5	21.600	0.6013	103.72	12988.50	0.008
T3	180 - 160	7/8	1.67	1.46	80.2	21.600	0.6013	230.72	12988.50	0.018
T4	160 - 140	7/8	1.67	1.50	82.5	21.600	0.6013	90.50	12988.50	0.007
T5	140 - 120	7/8	1.67	1.50	82.5	21.600	0.6013	99.38	12988.50	0.008
Т6	120 - 100	7/8	1.67	1.50	82.5	21.600	0.6013	120.05	12988.50	0.009
T7	100 - 80	7/8	1.67	1.50	82.5	21.600	0.6013	143.75	12988.50	0.011

The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor	17 of 18
Project		Date
	10381.00	09:46:29 09/10/03
Client		Designed by
	Cellular One	kellyp

Section No.	Elevation	Size	L	L,	KUr	Fa	Λ	Actual P	Allow. Pa	Ratio
110.	ft		· ft	ft		ksi	in²	lь	lb	$\frac{1}{P_a}$
18	80 - 60	7/8	1.67	1.50	82.5	21.600	0.6013	132.06	12988.50	0.010
T9	60 - 40	7/8	1.67	1.50	82.5	21.600	0.6013	2143.53	12988.50	0.165
T10	40 - 20	7/8	1.67	1.50	82.5	21.600	0.6013	139.43	12988.50	0.011
T11 .	20 - 2.333	7/8	1.67	1.50	82.5	21.600	0.6013	146.14	12988.50	0.011

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	SF*Pallow	%	Pass
No.	fi	Туре		Element	lb	lb	Capacity	Fail
T1	220 - 200	Leg	2	3	-6928.25	57059.73	12.1	Pass
		Diagonal	7/8	24	-783 <i>.</i> 72	11442.38	6.8	Pass
		Top Girt	I 1/4	4	-188.00	28865.85	0.7	Pass
		Bottom Girt	7/8	7	2256.81	17313.67	13.0	Pass
		Mid Girt	<i>7/</i> 8	11	-19.55	12223.92	0.2	Pass
		Guy A@200.25	3/8	471	10353.90	7700.00	134.5	Fail X
		Guy B@200.25	3/8	470	8445.74	7700.00	109.7	Fail X
		Guy C@200.25	3/8	469	10041.10	7700.00	130.4	Fail X
T2	200 - 180	Leg	2	45	-27246.50	57059.73	47.8	Pass
		Diagonal	7/8	82	-2261.45	11442.38	19.8	Pass
		Top Girt	1 1/4	46	1098.47	35334.10	3.1	Pass
		Bottom Girt	7/8	49	-508.35	12223.92	4.2	Pass
		Mid Girt	7/8	52	103.72	17313.67	0.6	Pass
T3	180 - 160	Leg	2 1/2	87	-32651.00	102774.30	31.8	Pass
•		Diagonal	7/8	98	-2387.98	11735.30	20.3	Pass
		Top Girt	1 1/2	90	-552.23	43886.22	1.3	Pass
		Bottom Girt	7/8	92	-825.90	12301.68	6.7	Pass
		Mid Girt	7/8	94	230.72	17313.67	1.3	Pass
T4	160 - 140	Leg	2	129	-30019.40	57673.17	52.1	Pass
• •		Diagonal	7/8	140	-3306.99	11504.71	28.7	Pass
		Top Girt	1 1/4	131	-846.49	28865.85	2.9	Pass
		Bottom Girt	7/8	134	-1342.14	12223.92	11.0	Pass
		Mid Girt	7/8	138	90.50	17313.67	0.5	Pass
T5	140 - 120	Leg	2	171	-35426.60	57673.17	61.4	Pass
	• • • • • • • • • • • • • • • • • • • •	Diagonal	7/8	185	-987.40	11504.71	8.6	Pass
		Top Girt	1 1/4	172	2874.23	35334.10	8.1	Pass
		Bottom Girt	7/8	177	-356.63	12223.92	2.9	Pass
		Mid Girt	7/8	178	99.38	17313.67	0.6	Pass
		Guy A@139.75	3/8	474	9186.58	7700.00	119.3	Fail X
		Guy B@139.75	3/8	473	7024.01	7700.00	91.2	Pass
		Guy C@139.75	3/8	472	7699.92	7700.00	100.0	Pass
T6	120 - 100	Leg	2	213	-56662.90	57673.17	98.2	Pass
		Diagonal	7/8	224	-2271.95	11504.71	19.7	Pass
		Top Girt	1 1/4	216	416.06	35334.10	1.2	Pass
		Bottom Girt	7/8	218	-937.65	12223.92	7.7	Pass
		Mid Girt	7/8	220	120.05	17313.67	0.7	Pass
T 7	100 - 80	Leg	2	255	-56666.10	57673.17	98.3	Pass
* *	.00 00	Diagonal	7/8	291	-1508.75	11504.71	13.1	Pass
		Top Girt	1 1/4	256	2382.34	35334.10	6.7	Pass
		Bottom Girt	7/8	259	-343.51	12223.92	2.8	Pass
		Mid Girt	7/8	263	143.75	17313.67	0.8	Pass

Job		Page
•	New Windsor	18 of 18
Project		Date
	10381.00	09:46:29 09/10/03
Client		Designed by
	Cellular One	kellyp

Section	Elevation	Component	Size	Critical	P	SF*Pallow	%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
		Guy A@99.75	3/8	477	7038.50	.7700.00	91.4	Pass
		Guy B@99.75	3/8	476	4923.66	7700.00	63.9	Pass
		Guy C@99.75	3/8	475	6203.27	7700.00	80.6	Pass
T8	80 - 60	Leg	2	297	-44593.10	57673.17	77.3	Pass
		Diagonal	7/8	334	-1009.43	11504.71	8.8	Pass
		Top Girt	1 1/4	298	425.72	35334.10	1.2	Pass
		Bottom Girt	7/8	302	-292.74	12223.92	2.4	Pass
		Mid Girt	7/8	305	132.06	17313.67	0.8	Pass
T9	60 - 40	Leg	2	339	-43820.50	57673.17	76.0	Pass
		Diagonal	<i>7/</i> 8	363	-1788.43	11504.71	15.5	Pass
	•	Top Girt	1 1/4	341	356.08	35334.10	1.0	Pass
		Bottom Girt	7/8	343	-622.63	12223.92	5.1	Pass
		Mid Girt	7/8	347	2143.53	17313.67	12.4	Pass
		Guy A@50	3/8	480	4364.92	7700.00	56.7	Pass
		Guy B@50	3/8	479	2898.86	7700.00	37.6	Pass
		Guy C@50	3/8	478	3564.98	7700.00	46.3	Pass
T10	40 - 20	Leg	2	381	-34410.80	57673.17	59.7	Pass
		Diagonal	7/8	418	-1654.05	11504.71	14.4	Pass
		Top Girt	1 1/4	382	714.80	35334.10	2.0	Pass
		Bottom Girt	7/8	385	-273.40	12223.92	2.2	Pass
		Mid Girt	7/8	388	139.43	17313.67	0.8	Pass
T11	20 - 2.333	Leg	2	423	-21583.30	63175.67	34.2	Pass
		Diagonal	7/8	460	-761.36	11916.87	6.4	Pass
		Top Girt	3x1/2	426	-254.58	19108.69	1.3	Pass
		Bottom Girt	3x1/2	428	2582.10	43189.20	6.0	Pass
		Mid Girt	7/8	430	146.14	17313.67	0.8	Pass
T12	2.333 - 0	Leg	2	463	-21263.50	49896.05	42.6	Pass
		Top Girt	3x1/2	466	2348.09	43189.20	5.4	Pass
							Summary	
						Leg (17)	98.3	Pass
						Diagonal (T4)	28.7	Pass
						Top Girt (T5)	8.1	Pass
						Bottom Girt	13.0	Pass
						(T1) Mid Girt (T9)	12.4	Pass
			•			Guy A (T1)	134.5	Fail X
						Guy B (T1)	109.7	Fail X
						Guy C (T1)	130.4	Fail X
						RATING =	134.5	Fail X

APPENDIX C: Model Results (After Retrofit)

The Chazen Companies
20 Gurley Avenue
Troy, New York 121823

Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor Retrofit	1 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client	0 " 1 0	Designed by
	Cellular One	kellyp

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	Dead+Wind 0 deg - No Ice+Guy
3	Dead+Wind 90 deg - No Ice+Guy
4	Dead+Wind 180 deg - No Ice+Guy
5	Dead+Ice+Temp+Guy
G	Dead+Wind 0 deg+Ice+Temp+Guy
7	Dead+Wind 90 deg+Ice+Temp+Guy
8	Dead+Wind 180 deg+Ice+Temp+Guy
9	Dead+Wind 0 deg - Service+Guy
10	Dead+Wind 90 deg - Service+Guy
11	Dead+Wind 180 deg - Service+Guy

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
				Comb.	lЬ	lb-fi	lb-fi
TI	220 - 200	Leg	Max Tension	4	4467.87	-37.64	23.20
			Max. Compression	6	-7044.20	21.68	-15.47
			Max. Mx	7	4030.10	-228.05	74.07
	-		Max. My	8	-5920.51	-1.92	-260.09
			Max. Vy	7	-1446.07	-228.04	74.07
			Max. Vx	8	-1570.93	-1.92	-260.09
		Diagonal	Max Tension	3	787.19	0.00	. 0.00
			Max. Compression	2	-770.00	0.00	0.00
			Max. Mx	6	541.93	1.57	0.00
			Max. My	6	54.04	0.00	-0.03
			Max. Vy	6	-2.43	0.00	0.00
			Max. Vx	6	0.05	0.00	0.00
		Top Girt	Max Tension	2	180.14	0.00	0.00
			Max. Compression	4	-185.88	0.00	0.00
			Max. Mx	5	-0.15	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	6	2340.60	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Мах. Мх	5	629.63	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
-		Mid Girt	Max Tension	6	18.32	0.00	0.00
			Max. Compression	7	-18.23	0.00	0.00
			· Max. Mx	5	0.26	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Guy A	Bottom Tension	8	11263.74		
			Top Tension	8	11486.47		
			Top Cable Vert	8	10434.33		
			Top Cable Norm	8	4802.47		
			Top Cable Tan	8	2.43		
			Bot Cable Vert	8	-10016.63		
			Bot Cable Norm	8	5151.59		
			Bot Cable Tan	8	2.43		
		Guy B	Bottom Tension	6	8740.37		
		00, D	Top Tension	6	8961.99		
			Top Cable Vert	6	7886.02		
	•		Top Cable Norm	6	4255.15		
			Top Cable Tan	6	4233.13 146.92		
			Bot Cable Vert	6			
			BUI CABIE VETI	o	-7525.78		

Job		Page
	New Windsor Retrofit	2 of 18
Project	·	Date
İ	10381.00	09:25:57 09/10/03
Client		Designed by
	Cellular One	keliyp

Section No.	Elevation fi	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
310.	,•	-77-		Comb.	lb	lb-ft	lb-ft
			Bot Cable Norm	6	4436.85		
			Bot Cable Tan	6	266.33		
	•	Guy C	Bottom Tension	7	10225.19		
•		•	Top Tension	7	10447.52		
			Top Cable Vert	7	9262.25		
			Top Cable Norm	7	4833.05		
			Top Cable Tan	7	55.41		
			Bot Cable Vert	7	-8843.43		
			Bot Cable Norm	7	5130.33		
			Bot Cable Tan	7	167.11		
T2	200 - 180	Leg	Max Tension	2	17853.24	-27.44	39.38
			Max. Compression	8	-31245.03	-47.94	128.46
	,		Max. Mx	6	-6075.23	-133.17	-69.53
			Max. My	8	-7489.20	-27.49	132.08
			Max. Vy	7	-536.98	-34.64	9.66
		D:1	Max. Vx	2	613.67	53.82	57.24
		Diagonal	Max Tension	7	2224.83	0.00	0.00
			Max. Compression	7	-2417.64	0.00	0.00
			Max. Mx Max. My	6 6	-1974.91 513.17	1.57 0.00	0.00 -0.03
			Max. Vy	6	-2.43	0.00	0.00
		•	Max. Vx	6	0.05	0.00	0.00
		Top Girt	Max Tension	7	1194.29	0.00	0.00
		Top Citt	Max. Compression	4	-565.01	0.00	0.00
			Max. Mx	5	144.49	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	2	544.28	0.00	0.00
			Max. Compression	3	-568.73	0.00	0.00
			Max. Mx	5	12.36	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	6	109.34	0.00	0.00
			Max. Compression	4	-42.09	0.00	0.00
			Max. Mx	5	26.69	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
T3	180 - 160	Leg	Max Tension	2	23388.09	-77.70	-77.97
			Max. Compression	8	-37699.85	-132.27	30.49
			Max. Mx	7	-25820.85	248.89	21.88
			Max. My	2	-19869.57	-72.43	-266.61
			Max. Vy	7	-536.71	99.45	5.93
			Max. Vx	2	610.89	42.61	-96.02
		Diagonal	Max Tension	2	2041.35	0.00	0.00
			Max. Compression	8	-2013.63	0.00	0.00
			Max. Mx	6	766.57	1.57	0.00
			Max. My	7	1096.73	0.00	0.03
			Max. Vy	6 7	-2.44	0.00	0.00
		T Ci-	Max. Vx Max Tension		-0.05	0.00	0.00
•		Top Girt		7 2	631.40 -579.00	0.00 0.00	0.00 0.00
			Max. Compression Max. Mx	5	14.32	2.52	0.00
			Max. Mx Max. Vy	5	-6.04	0.00	0.00
		Bottom Girt	Max. Vy Max Tension	6	740.08	0.00	0.00
		Bottom Car	Max. Compression	4	-731.73	0.00	0.00
			Max. Compression Max. Mx	5	-731.73 24.73	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	6	255.62	0.00	0.00
		MIN OIL	Max. Compression	4	-134.85	0.00	0.00
			Max. Mx	5	49.52	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		_	•	2	13412.20		-88.63
та	160 - 140	Ĭ #O					
T4	160 - 140	Leg	Max Tension Max. Compression	8	-29405.90	-18.23 -59.79	-8.30

The Chazen Companies
20 Gurley Avenue
Trov. New York 121823

Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor Retrofit	3 of 18
Project	·	Date
	10381.00	09:25:57 09/10/03
Client		Designed by
	Cellular One	kellyp

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force	Major Axis Moment	Minor Ax Moment
			No. 16.		<u>lb</u>	<u>lb-ft</u>	1b-ft
			Max. My	8	-3453.62	-43.09	263.23
			Max. Vy	7	1150.55	-35.58	10.77
		Discount	Max. Vx	8	1177.44	-12.39	-30.96
		Diagonal	Max Tension	8	2837.37	0.00	0.00
			Max. Compression	2	-2984.47	0.00	0.00
			Max. Mx	7	1974.81	1.57	0.00
			Max. My	7	1428.92	0.00	0.03
			Max. Vy	7	-2.45	0.00	0.00
			Max. Vx	7	-0.05	0.00	0.00
		Top Girt	Max Tension	4	759.28	0.00	0.00
			Max. Compression	2	-699.27	0.00	0.00
			Max. Mx	5	10.33	1.83	0.00
			Max. Vy	5	-4 .38	0.00	0.00
		Bottom Girt	Max Tension	6	1415.02	0.00	0.00
			 Max. Compression 	8	-1258.82	0.00	0.00
			Max. Mx	5	25.99	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	8	107.21	0.00	0.00
			Max. Compression	4	-5.75	0.00	0.00
			Max. Mx	5	37.29	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
T5	140 - 120	Î ea	Max Tension	3	3433.65	-38.16	7.99
13.	140 - 120	Leg			-18634.51		-13.22
		_	Max. Compression	6		72.57	
			Max. Mx	7	1904.17	-323.39	69.37
			Max. My	6	-18303.83	-56.84	352.25
			Max. Vy	7	1151.99	-323.39	69.37
			Max. Vx	8	1178.70	18.33	-325.48
		Diagonal	Max Tension	7	1091.40	0.00	0.00
			Max. Compression	7	-1053.16	0.00	0.00
			Max. Mx	7	<i>-</i> 901.83	1.57	0.00
			Max. My	6	58.93	0.00	-0.03
			Max. Vy	7	-2.45	0.00	0.00
			Max. Vx	6	-0.05	0.00	0.00
		Top Girt	Max Tension	6	3001.09	0.00	0.00
		•	Max. Compression	1	0.00	0.00	0.00
			Max. Mx	5	783.32	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	6	145.83	0.00	0.00
		. Dottom Girt	Max. Compression	7	-234.02	0.00	0.00
			Max. Mx	5	23.60	1.01	0.00
				5			
		Mid Girt	Max. Vy		-2.41	0.00	0.00
		Mia Gift	Max Tension	8	98.11	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	5	48.69	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Guy A	Bottom Tension	8	9679.36		
			Top Tension	8	9813.37		
			Top Cable Vert	8	8512.45		
			Top Cable Norm	8	4882.68		
			Top Cable Tan	8	1.18		
			Bot Cable Vert	8	-8241.98		
			Bot Cable Norm	8	5075.41		
			Bot Cable Tan	8	1.18		
		Guy B	Bottom Tension	6	7010.08		
		Out D	Top Tension	6			
			•		7143.64		
		,	Top Cable Vert	6	5633.71		
			Top Cable Norm	6	4391.27		
			Top Cable Tan	6	98.39		
			Bot Cable Vert	6	-5382.83		
			Bot Cable Norm	6	4487.30		
			Bot Cable Tan	6	174.82		

Job	,	Page
	New Windsor Retrofit	4 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client		Designed by
	Cellular One	kellyp

ection No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Ax Moment
			D-H Ti	Comb.	<u>lb</u>	lb-ft	lb-ft
		Guy C	Bottom Tension	7	8330.97		
			Top Tension Top Cable Vert	7 7	8464.99 6746.76		
				7	6746.76 5112.36		
			Top Cable Norm	7			
			Top Cable Tan		31.54		
			Bot Cable Vert	7	-6457.84		
			Bot Cable Norm	7	5262.10		
Tr.C	120 - 100	T	Bot Cable Tan	7	107.54	0.05	116.53
T6	120 - 100	Leg	Max Tension	4	5110.98	-0.95	
			Max. Compression Max. Mx	6	-32527.86	-41.37 153.93	99.69
				7	-83.51	-63.20	-14.84
			Max. My	6	-4759.21		-171.07
			Max. Vy	7	687.34	-17.74	2.62
		Diamond	Max. Vx	8	756.61	-18.28	-38.75
:		Diagonal	Max Tension	8	2002.73	0.00	0.00
			Max. Compression	6	-2038.27	0.00	0.00
			Max. Mx	6	383.90	1.57	0.00
			Max. My	6	48.22	0.00	-0.03
			Max. Vy	6	-2.44	0.00	0.00
		E 61.	Max. Vx	6	-0.05	0.00	0.00
		Top Girt	Max Tension	7	294.90	0.00	0.00
			Max. Compression	2	-115.68	0.00	0.00
			Max. Mx	5	17.49	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	6	982.91	0.00	0.00
			Max. Compression	8	-862.59	0.00	0.00
			Max. Mx	5	44.47	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	8	102.13	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	5	54.54	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
7	100 - 80	Leg	Max Tension	4	5108.28	-12.07	-40.32
			Max. Compression	6	-32530.99	-4 2.70	254.70
			Max. Mx	7	-11037.39	-200.15	-0.51
			Max. My	8	-21286.88	-25.19	-265.69
			Max. Vy	7	688.50	-189.71	20.07
			Max. Vx	8	<i>75</i> 7.95	-15.68	-228.10
		Diagonal	Max Tension	2	1239.10	0.00	0.00
			Max. Compression	2	-1273.58	0.00	0.00
			Max. Mx	6	-458.92	1.56	0.00
			Max. My	6	270.45	0.00	-0.03
			Max. Vy	6	-2.44	0.00	0.00
			Max. Vx	6	0.04	0.00	0.00
		Top Girt	Max Tension	6	2044.78	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	5	742.08	1.83	0.00
			. Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	2	236.33	0.00	0.00
			Max. Compression	4	-197.21	0.00	0.00
	-		Max. Mx	5	32.80	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	7	118.05	0.00	0.00
			Max. Compression	i	0.00	0.00	0.00
			Max. Mx	5	66.84	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Guy A	Bottom Tension	8	6265.99	V-VV	0.00
		Guy At	Top Tension	8	6345.78		
		•	Top Cable Vert	8	4947.19		
			Top Cable Norm	8	3974.21		
			105 CEDIC HOURS	8	27/4.61		

Job	•	Page
	New Windsor Retrofit	5 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client		Designed by
ļ	Cellular One	kellyp

No.	ft	Туре		Load		Moment	Moment
				Comb.	lb	lb-ft	lb-ft
			Bot Cable Vert	8	-4764.17		
			Bot Cable Norm	8	4070.05		
		•	Bot Cable Tan	8	0.65		
		Guy B	Bottom Tension	6	4263.21		
		, -	Top Tension	6	4342.77		
			Top Cable Vert	6	2943.82		
			Top Cable Norm	6	3191.66		
			Top Cable Tan	6	82.92		
			Bot Cable Vert	6	-2767.14		
			Bot Cable Norm	6	3241.22		
			Bot Cable Tan	6	111.19		
•		Guy C	Bottom Tension	7	5083.47		
		ou, o	Top Tension	'n	5163.27		
			Top Cable Vert	7	3549.03		
			Top Cable Norm	'n	3750.04		
			Top Cable Tan	7	30.99	-	
			Bot Cable Vert	7	-3350.84		
			Bot Cable Norm	7	3822.29		
			Bot Cable Tan	7	60.56		
T8	80 - 60	ī an	Max Tension	í	0.00	0.00	0.00
10	au - 00	Leg		6	-29444.26	-39.21	65.71
		•	Max. Compression Max. Mx	7	-11166.24	104.79	-10.69
				2		-30.19	-10.09
			· Max. My		-9719.36		
			Max. Vy	7	268.01	-49.98	4.17
		D:1	Max. Vx	2	-395.95	-23.38	-27.88
		Diagonal	Max Tension	4	1051.55	0.00	0.00
			Max. Compression	2	-1196.21	0.00	0.00
			Max. Mx	7	-509.33	1.56	0.00
			Max. My	8	-411.51	0.00	0.02
			Max. Vy	7	2.43	0.00	0.00
		•	Max. Vx	8	-0.03	0.00	0.00
	•	Top Girt	Max Tension	4	244.65	0.00	0.00
			Max. Compression	2	-160.53	0.00	0.00
			Max. Mx	5	22.22	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	2	537.72	0.00	0.00
			Max. Compression	4	-4 39.63	0.00	0.00
			Max. Mx	5	34.19	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Mid Girt	Max Tension	7	130.29	0.00	0.00
			Max. Compression	i	0.00	0.00	0.00
			Max. Mx	5	71.76	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
T9	60 - 40	Leg	Max Tension	4	1145.51	-4.89	-26.21
		•	Max. Compression	6	-35286.62	70.48	124.19
			Max. Mx	7	-32457.65	-131.38	17.16
			Max. My	6	-27571.66	-73.02	173.26
			Max. Vý	7	-479.70	-68.84	-7.47
			Max. Vx	6	455.03	-73.02	173.26
		Diagonal	Max Tension	7	1458.03	0.00	0.00
			Max. Compression	2	-1563.82	0.00	0.00
			Max. Mx	7	571.40	1.56	0.00
			Max. My	8	-407.96	0.00	0.00
			Max. Vy	7	2.43	0.00	0.02
			Max. Vx	8	-0.03	0.00	0.00
		Top Girt	Max. vx Max Tension	8			
		1 op GIR			529.22	0.00	0.00
			Max. Compression	2	-488.1 <i>5</i>	0.00	0.00
			Max. Mx	5	23.49	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	6	498.41	0.00	0.00

Job		Page
•	New Windsor Retrofit	6 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client		Designed by
	Cellular One	keliyp

Section	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
No.	ft	Туре		Load	**	Moment	Moment
			Max. Mx	Comb.	<i>lb</i>	<u>lb-ft</u>	1b-ft 0.00
			Max. Mx Max. Vy	5 5	31.45 -2.41	1.01 0.00	0.00
		Mid Girt	Max Tension	8	2304.31	0.00	0.00
		Mid Oilt	Max. Compression	i	0.00	0.00	0.00
			Max. Mx	5	1095.28	1.01	0.00
			Max. Vy	5	-2.41	0.00	0.00
		Guy A	Bottom Tension	8	4646.45		
		,	Top Tension	8	4686.67		
			Top Cable Vert	8	2478.46		
			Top Cable Norm	8	3977.70		
			Top Cable Tan	8	0.41		
			Bot Cable Vert	8	-2369.14		
			Bot Cable Norm	8	3997.09		
			Bot Cable Tan	8	0.41		
		Guy B	Bottom Tension	6	3100.02		
			Top Tension	6	3140.15		
			Top Cable Vert	6	1333.92		
			· Top Cable Norm	6	2842.02		
			Top Cable Tan	6	64.29		
			Bot Cable Vert	6 6	-1205.86		
			Bot Cable Norm Bot Cable Tan	6	2854.99 71.02		
		Guy C	Bottom Tension	7	3849.35		-
		duy C	Top Tension	'n	3889.55		
			Top Cable Vert	7	1676.08		
			Top Cable Norm	'n	3509.82		
			Top Cable Tan	'n	22.80		
			Bot Cable Vert	7	-1544.56	•	
			Bot Cable Norm	7	3525.76		
			Bot Cable Tan	7	30.14		
T10	40 - 20	Leg	Max Tension	1	0.00	0.00	0.00
		_	Max. Compression	6	<i>-27577.</i> 71	-5.89	-54.45
			Max. Mx	7	-15087.13	170.26	19. 6 6
			Max. My	8	-11032.40	-71.40	129.99
			Max. Vy	7	-477.58	50.97	6.12
			Max. Vx	6	456.73	-39.67	59.62
		Diagonal	Max Tension	2	1247.22	0.00	0.00
			Max. Compression	7	-1449.41	0.00	0.00
			Max. Mx	7.	-1443.81	1.55	0.00
			Max. My	8	347.64	0.00	0.01
			Max. Vy Max. Vx	7 8	-2.42 -0.02	0.00 0.00	0.00 0.00
		Top Girt	Max. vx Max Tension	7	-0.02 617.57	0.00	0.00
		Top Girt	Max. Compression	2	-409.33	0.00	0.00
			Max. Mx	5	33.09	1.83	0.00
			Max. Vy	5	-4.38	0.00	0.00
		Bottom Girt	Max Tension	6	246.73	. 0.00	0.00
		20.0 0	Max. Compression	7	-158.01	0.00	0.00
			Max. Mx	6	195.24	1.01	0.00
			Max. Vy	6	-2.41	0.00	0.00
		Mid Girt	Max Tension	7	138.90	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	6	125.20	1.01	0.00
			Max. Vy	6	-2.41	0.00	0.00
TII	20 - 2.333	Leg	Max Tension	ì	0.00	0.00	0.00
		-	Max. Compression	7	-22774.55	17.51	-25.61
			Max. Mx	7	-20336.50	-799.03	436.46
			Max. My	8	-19615.76	31.66	-882.38
			Max. Vy	7	3716.69	-799.03	436.46
			Max. Vx	8	4142.39	31.66	-882.38
		Diagonal			785.15	0.00	

The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page .		
	New Windsor Retrofit	7 of 18		
Project		Date		
	10381.00	09:25:57 09/10/03		
Client		Designed by		
	Cellular One	keliyp		

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment	
	•	••		Comb.	lb	lb-ft	lb-ft	
		•	Max. Compression	2	-894.06	0.00	0.00	
			Max. Mx	7	116.32	1.45	0.00	
			Max. My	8	-333.61	0.00	0.01	
			Max. Vy	7	-2.42	0.00	0.00	
			Max. Vx	8	-0.01	0.00	0.00	
		Top Girt	Max Tension	7	252.09	0.00	0.00	
		•	Max. Compression	6 .	-151.22	0.00	0.00	
			Max. Mx	6	-84.49	2.36	0.00	
			Max. Vy	6	-5.65	0.00	0.00	
		Bottom Girt	Max Tension	· 6	2698.92	0.00	0.00	
			Max. Compression	1	0.00	0.00	0.00	
			Max. Mx	6	2612.81	2.36	0.00	
			Max. Vy	. 6	-5.65	0.00	0.00	
		Mid Girt	Max Tension	6	154.64	0.00	0.00	
			Max. Compression	1	0.00	0.00	0.00	
			Max. Mx	6	154.64	1.01	0.00 -	
			Max. Vy	6	-2.41	0.00	0.00	
T12	2.333 - 0	Leg	Max Tension	1	0.00	0.00	0.00	
		_	Max. Compression	7	-22083.75	40.62	-130.43	
			Max. Mx	7	-20443.39	910.21	19.90	
			Max. My	4	-13996.88	27.74	-225.50	
			Max. Vy	7	3795.30	-116.43	7.81	
		•	Max. Vx	4	178.24	-103.27	9.72	
	•	Top Girt	Max Tension	7	2444.55	0.00	0.00	
		•	Max. Compression	l	0.00	0.00	0.00	
			Max. Mx	8	2212.32	1.84	0.00	
			Max. My	8	2356.98	0.00	0.38	
			Max. Vy	8	-4.94	0.00	0.00	
			Max. Vx	8	-1.02	0.00	0.00	

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical lb	Horizontal, X lb	Horizontal, Z lb
Mast	Max. Vert	6	58481.68	3.29	263.65
Mast	Max. H _x	2	46190.36	3.40	308.28
•	_	2	46190.36		
	Max. H _z			3.40	308.28
	Max. M _x	ļ	0.00	0.49	15.34
	Max. M _z	1	0.00	- 0.49	15.34
	Max. Torsion	4	326.89	0.30	-359.59
	Min. Vert	1	30880.49	0.49	15.34
	Min. H _z	3	44 187.46	-335.73	146.31
	Min. H _z	4	39945.93	0.30	-359.59
	Min. M _x	I	0.00	0.49	15.34
	Min. Mz	1	0.00	0.49	15.34
	Min. Torsion	2	-275.66	3.40	308.28
Guy C @ 110 ft Elev 0 ft Azimuth 240 deg	Max. Vert	4	-2458.09	-2044.45	933.56
	Max. H.	4 .	-2458.09	-2044.45	933.56
	Max. H ₂	7	-20196.66	-15546.39	8553.83
	Min. Vert	7	-20196.66	-15546.39	8553.83
	Min. H _x	7	-20196.66	-15546.39	8553.83
	Min. H,	4	-2458.09	-2044.45	933.56
Guy B @ 113 ft Elev 0 ft Azimuth 120 deg	Max. Vert	3	-854.05	522.06	419.81

Page Job **ERITower** 8 of 18 New Windsor Retrofit Date Project The Chazen Companies 10381.00 09:25:57 09/10/03 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051 Client Designed by Cellular One kellyp

Location	Condition	Gov. Load Comb.	Vertical lb	Horizontal, X lb	Horizontal, Z lb
	Max. H,	6	-16881.62	12696.34	8050.02
	Max. H ₂	6	-16881.62	12696.34	8050.02
	Min. Vert	6	-16881.62	12696.34	8050.02
	Min. Hx	3	-854.05	522.06	419.81
	Min. Hz	3	-854.05	522.06	419.81
Guy A @ 97 ft Elev 0 ft	Max. Vert	9	-431.30	0.01	-185.36
Azimuth 0 deg					
_	Max. H _x	9	-431.30	0.01	-185.36
	Max. H _z	2	-44 0.10	-0.00	-141.91
	Min. Vert	8	-10016.63	-2.43	-5151.59
	Min. H _x	7	-5735.00	-284.19	-2826.94
	Min. Hz	8	-10016.63	-2.43	-5151.59
Guy A @ 83 ft Elev 0 ft	Max. Vert	2	-279.55	0.01	-161.60
Azimuth 0 deg					
	$Max. H_x$	9	-474.71	0.03	-603.64
	Max. H _z	2	-27 9.55	0.01	-161.60
	Min. Vert	8	-15375.30	-2.23	-13142.5 4
	$Min. H_x$	7	-8106.63	-374.13	-6891.08
	Min. H _z	8	-15375.30	-2.23	-13142.54

Tower Mast Reaction Summary

Load Combination	Vertical	Shearx	Shear <u>.</u>	Overturning Moment, Ms	Overturning Moment, M _x	Torque
_	lЬ	lb	lb	lb-fi	lb-ft	lb-ft
Dead Only	30880.49	-0.49	-15.34	0.00	0.00	4.16
Dead+Wind 0 deg - No	46190.36	-3.40	-308.28	0.00	0.00	275.66
Ice+Guy						
Dead+Wind 90 deg - No	44187.46	335.73	-146.31	0.00	0.00	-184.45
Ice+Guy						
Dead+Wind 180 deg - No	39945.93	-0.30	359.59	0.00	0.00	-326.89
Ice+Guy						
Dead+Ice+Temp+Guy	41508.48	-0.80	-28.62	0.00	0.00	6.05
Dead+Wind 0	58481.68	-3.29	-263.65	0.00	0.00	219.61
deg+lce+Temp+Guy						
Dead+Wind 90	58325.15	318.70	-185.50	0.00	0.00	-174.63
deg+lce+Temp+Guy						
Dead+Wind 180	56394.43	-0.90	305.10	0.00	0.00	-224.30
deg+Ice+Temp+Guy						
Dead+Wind 0 deg -	31984.69	-1.39	-286.81	0.00	0.00	190.11
Service+Guy						
Dead+Wind 90 deg -	32499.47	266.10	-25.48	0.00	0.00	-124.88
Service+Guy						
Dead+Wind 180 deg -	32694.57	-0.04	215.87	0.00	0.00	-189.48
Service+Guy						

Solution Summary

	Sui	m of Applied Force	s				
Load	PX	PY	PZ	PX	PΥ	PZ	% Error
Comb.	lь	lb	<u>lb</u> _	lb	lb	lb	
1	0.00	-14508.64	0.00	0.17	14508.65	1.15	0.008%
2	3.23	-14560.98	-14010.15	-3.20	14560.92	14007.54	0.013%
3	13140.26	-14506.92	-2.40	-13138.61	14506.88	3.60	0.010%

Job	Page
New Windsor Retrofit	9 of 18
Project	Date
10381.00	09:25:57 09/10/03
Client Cellular One	Designed by kellyp
	New Windsor Retrofit Project 10381.00 Client

	Su	m of Applied Force	s		Sum of Reaction	15	
Load	PX	PY	PZ	PX	PΥ	PZ	% Error
Comb.	lb	lb	<u>lb</u>	lb	lь	lb	
4	-3.23	-14456.31	12954.81	4.97	14456.30	-12954.45	0.009%
5	0.00	-22438.94	0.00	0.24	22438.94	1.35	0.006%
6	8.13	-22570.73	-15573.37	-8 .11	22570.67	15571.07	0.008%
7	15315.26	-22434.92	-5.96	-15313.15	22434.87	7.59	0.010%
8	-8.13	-22307.16	15483.13	10.49	22307.15	-15482.73	0.009%
9	1.65	-14535.35	-7148.04	-1.64	14535.34	7147.11	0.006%
10	6704.22	-14507.76	-1.22	-6703.61	14507.75	1.71	0.005%
11	-1.65	-14481.94	6609.60	2.00	14481.93	-6608.37	0.008%

Non-Linear Convergence Results

Load Combination.	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	10	0.00000001	0.00011706
2	Yes	32	0.00014475	0.00014343
3	Yes	35	0.00012472	0.00010604
4	Yes	24	0.00013189	0.00000001
5	Yes .	14	0.00000001	0.0000001
6	Yes	34	0.00012313	0.00011184
· 7	Yes	36	0.00014480	0.00011747
8	Yes	25	0.00014738	0.00000001
9	Yes	24	0.0000001	0.00000001
10	Yes	25	0.0000001	0.00000001
11	Yes	17	0.00014819	0.00000001

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	_ ft _	in_	Comb.	deg	deg
TI	220 - 200	5.924	11	0.0206	0.7602
T2	200 - 180	5.872	11	0.0102	0.8153
T3	180 - 160	5.768	11	0.0847	0.7409
T4	160 - 140	5.181	11	0.1891	0.6437
T5	140 - 120	4.203	11	0.2323	0.5679
T6	120 - 100	3.262	11	0.2226	0.5171
T7	100 - 80	2.362	11	0.1853	0.4426
T8	80 - 60	1.697	11	0.1467	0.3669
T9	60 - 40	1.110	11	0.1274	0.2932
T10	40 - 20	0.694	10	0.0763	0.2207
T11	20 - 2.333	0.403	10	0.0827	0.1539
T12	2.333 - 0	0.051	10	0.1025	0.0935

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
fl		Comb.	in	deg	deg	ft
220.00	RMU (Remote Units)	11	5.924	0.0206	0.7602	209210
210.00	6810 Circular Polarized FM 5-bay	11	5.893	0.0082	0.8000	104605
205.00	6810 Circular Polarized FM 5-bay	11	5.880	0.0065	0.8122	69737

TO TT	Job	Page
ERITower	New Windsor Retrofit	10 of 18
The Chazen Companies	Project 10381.00	Date 09:25:57 09/10/03
20 Gurley Avenue Troy. New York 121823	Client	Designed by
Phone: (\$18) 235-8050 FAX: (\$18) 235-8051	Cellular One	kellyp

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	deg	deg	ft
200.25	Guy	11	5.872	0.0099	0.8154	77044
200.00	6810 Circular Polarized FM 5-bay	11	5.872	0.0102	0.8153	81720
195.00	6810 Circular Polarized FM 5-bay	11	5.866	0.0207	0.8070	49677
190.00	6810 Circular Polarized FM 5-bay	11	5.854	0.0370	0.7898	17607
175.00	(3) DB844H90E-XY w/Pipe Mount	11	5.674	0.1125	0.7154	8158
173.00	(3) DB844H90E-XY w/Pipe Mount	11	5.626	0.1238	0.7053	8365
171.00	(3) DB844H90E-XY w/Pipe Mount	11	5.573	0.1349	0.6954	8574
163.00	PD220	11	5.303	0.1761	0.6573	9336
157.50	. PD220	11	5.072	0.1985	0.6326	11905
152.00	PD220	11	4.810	0.2148	0.6096	22897
146.50	PD220	11	4.533	0.2256	0.5888	157237
141.00	PD220	11	4.253	0.2316	0.5708	23522
139.75	Guy	11	4.191	0.2324	0.5672	21721
118.00	Flash Beacon Lighting	11	3.168	0.2197	0.5109	166020
117.50	PR-950	11	3.145	0.2190	0.5093	238025
116.00	PR-950	11	3.074	0.2167	0.5043	113856
114.50	PR-950	11	3.003	0.2142	0.4990	60294
99.75	Guy	11	2.352	0.1847	0.4416	11924
50.00	Guy	11	0.878	0.1003	0.2556	25716

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	fi	in	Comb.	deg	deg
TI	220 - 200	22.977	6	0.3901	1.3247
T2	200 - 180	21.361	6	0.3672	1.4309
T3	180 - 160	19.647	6	0.5308	1.2944
T4	160 - 140	16.949	6	0.7472	1.1131
T5	140 - 120	13.424	6	0.8382	0.9739
Т6	120 - 100	10.034	6	0.7891	0.8900
17	100 - 80	7.409	2	0.6646	0.7587
T8	80 - 60	5.350	2	0.5091	0.6280
T9	60 - 40	3.533	2	0.3964	0.5001
T10	40 - 20	2.173	2	0.2608	0.3759
T11	20 - 2.333	1.151	2	0.2557	0.2606
T12	2.333 - 0	0.140	2	0.2848	0.1563

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	deg	deg	ft
220.00	RMU (Remote Units)	6	22.977	0.3901	1.3247	107919
210.00	6810 Circular Polarized FM 5-bay	6	22.159	0.3620	1.4008	53960
205.00	6810 Circular Polarized FM 5-bay	6	21.756	0.3583	1.4245	35973
200.25	Guy	6	21.380	0.3663	1.4311	40425
200.00	6810 Circular Polarized FM 5-bay	6	21.361	0.3672	1.4309	43054
195.00	6810 Circular Polarized FM 5-bay	6	20.972	0.3914	1.4163	20250
190.00	6810 Circular Polarized FM 5-bay	6	20.572	0.4290	1.3847	7984
175.00	(3) DB844H90E-XY w/Pipe Mount	6	19.082	0.5884	1.2468	3776
173.00	(3) DB844H90E-XY w/Pipe Mount	6	18.835	0.6116	1.2282	3847
171.00	(3) DB844H90E-XY w/Pipe Mount	6	18.576	0.6345	1.2097	3920
163.00	PD220	6	17.425	0.7198	1.1385	4255

The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor Retrofit	11 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client		Designed by
	Cellular One	kellyp

Elevation	Appurtenance	Gov. Load	Deflection ·	Tilt	Twist	Radius of Curvature
ft		Comb.	in	deg	deg	ft
157.50	PD220	6	16.534	0.7673	1.0925	5210
152.00	PD220	6	15.580	0.8026	1.0496	8638
146.50	PD220	6.	14.592	0.8259	1.0114	26042
141.00	PD220	6	13.602	0.8374	0.9791	13804
139.75	Guy	6	13.380	0.8383	0.9727	12361
118.00	Flash Beacon Lighting	. 2	9.741	0.7793	0.8793	41660
117.50	PR-950	2	9.673	0.7767	0.8765	39153
116.00	PR-950	2	9.470	0.7689	0.8677	24520
114.50	PR-950	2	9.268	0.7607	0.8585	17391
99.75	Guy	2	7.380	0.6627	0.7569	4893
50.00	Guy	2	2.790	0.3425	0.4413	6607

Guy Design Data:

Section	Elevation	Size	Initial Tension	Breaking Load	Actual T	Allowable T.	Required S.F.	Actual S.F.
No.	fi		lb	lb	ĺЬ	lb	. O.F.	S.F.
Tl	200.25 (A) (471)	1/2 EHS	2690.00	26900.04	11486.50	13450.00	2.000	2.342
	200.25 (B) (470)	1/2 EHS	2690.00	26900.04	8961.99	13450.00	2.000	3.002
	200.25 (C) (469)	1/2 EHS	2690.00	26900.04	10447.50	13450.00	2.000	2.575
T5	139.75 (A) (474)	7/16 EHS	2080.00	20800.02	9813.37	10400.00	2.000	2.120
	139.75 (B) (473)	7/16 EHS	2080.00	20800.02	7143.64	10400.00	2.000	2.912
	139.75 (C) (472)	7/16 EHS	2080.00	20800.02	8464.99	10400.00	2.000	2.457
T7	99.75 (A) (477)	3/8 EHS	1540.00	15399.96	6345.78	7700.00	2.000	2.427
	99.75 (B) (476)	3/8 EHS	1540.00	15399.96	4342.77	7700.00	2.000	3.546
	99.75 (C) (475)	3/8 EHS	1540.00	15399.96	5163.27	7700.00	2.000	2.983
Т9	50.00 (A) (480)	3/8 EHS	1540.00	15399.96	4686.67	7700.00	2.000	3.286
	50.00 (B) (479)	3/8 EHS	1540.00	15399.96	3140.15	7700.00	2.000	4.904
	50.00 (C) (478)	3/8 EHS	1540.00	15399.96	3889.55	7700.00	2.000	3.959

Compression Checks

Leg Design Data (Compression):

Section No.	Elevation	Size	L	$L_{\mathbf{v}}$	KVr	Mast Stability	F_a	А	Actual P	Allow. P.,	Ratio P
	fi		fi	ft		Index	ksi	in ²	IЬ	lb	Pa
Tì	220 - 200	2	20.00	1.98	94.8 K=2.00	1.00	13.625	3.1416	-7044.20	42805.50	0.165
T2	200 - 180	2	20.00	1.98	94.8 K=2.00	1.00	13.625	3.1416	-31245.00	42805.50	0.730

The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor Retrofit	12 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client		Designed by
	Cellular One	kellyp

Section No.	Elevation	Size	L	L_{\bullet}	KUr	Mast Stability	F_{ϵ}	Λ	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		Index	ksi	in²	lb	lb	P_a
T3	180 - 160	2 1/2	20.00	1.95	74.9 K=2.00	0.98	15.621	4.9087	-37699.90	76677.90	0.492
T 4	160 - 140	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-29405.90	43265.70	0.680
T5	140 - 120	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-18634.50	43265.70	0.431
Т6	120 - 100	2	20.00	1.95	93.6 K ≈ 2.00	1.00	13.772	3.1416	-32527.90	43265.70	0.752
17	100 - 80	2	20.00	1.95	93.6 K=2.00	1.00	13. <i>T</i> 72	3.1416	-32531.00	43265.70	0.752
T8	80 - 60	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-29444.30	43265.70	0.681
Т9	60 - 40	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-35286.60	43265.70	0.816
T10	40 - 20	2	20.00	1.95	93.6 K=2.00	1.00	13.772	3.1416	-27577.70	43265.70	0.637
TII	20 - 2.333	2	17.6 7	1.72	82.4 K=2.00	1.00	15.086	3.1416	-22774.60	47393.60	0.481
T12	2.333 - 0	2	2.52	2.25	108.2 K=2.00	1.00	11.915	3.1416	-22083.70	37431.40	0.590

Diagonal Design Data (Compression):

Section No.	Elevation	Size	L	$L_{\mathbf{r}}$	KUr	F.	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in²	lЬ	lb	P_{a}
Tl	220 - 200	7/8	2.59	2.33	89.4 K=0.70	14.275	0.6013	-769.99	8583.93	0.090
T2	200 - 180	7/8	2.59	2.33	89.4 K=0.70	14.275	0.6013	-2417.64	8583.93	0.282
T 3	180 - 160	7/8	2.57	2.25	86.3 K=0.70	14.641	0.6013	-2013.63	8803.68	0.229
T4	160 - 140	7/8	2.57	2.31	88.7 K≕0.70	14.353	0.6013	-2984.47	8630.69	0.346
T5	140 - 120	7 <i>/</i> 8	2.57	2.31	88.7 K≕0.70	14.353	0.6013	-1053.16	8630.69	0.122
Т6	120 - 100	7/8	2.57	2.31	88.7 K = 0.70	14.353	0.6013	-2038.27	8630.69	0.236
T7	100 - 80	7/8	2.57	2.31	88.7 K≕0.70	14.353	0.6013	-1273.58	8630.69	0.148
T8	80 - 60	7/8	2.57	2.31	88.7 K=0.70	14.353	0.6013	-1196.21	8630.69	0.139
T9	60 - 40	7/8	2.57	2.31	88.7 K≕0.70	14.353	0.6013	-1563.82	8630.69	0.181
T10	40 - 20	7/8	2.57	2.31	88.7 K≕0.70	14.353	0.6013	-1449.41	8630.69	0.168
Tii	20 - 2.333	7/8	2.39	2.16	84.3 K≃0.71	14.867	0.6013	-894.06	8939.89	0.100

The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor Retrofit	13 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client		Designed by
	Cellular One	keliyp

No.	P P	P P
ft ft ft ksi in ²	lb ll	$b = P_a$

Top Girt Design Data (Compression):

Section No.	Elevation	Size	L	L	KUr	Fa	A	Actual P	Allow. P.	Ratio P
	ft		ft	ft		ksi	in²	lb	lb	P_a
Tl	220 - 200	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-185.88	21654.80	0.009
T2	200 - 180	1 1/4	1.67	1.50	57.7 K≈1.00	17.646	1.2272	-565.01	21654.80	0.026
Т3	180 - 160	1 1/2	1.67	1.46	46.8 K=1.00	18.631	1.7672	-579.00	32922.90	0.018
T4	160 - 140	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-699.27	21654.80	0.032
T 6	120 - 100	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-115.68	21654.80	0.005
TB	80 - 60	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-160.53	21654.80	0.007
T9	60 - 40	1 1/4	1.67	1.50	57.7 K=1.00	17.646	1.2272	-488.15	21654.80	0.023
T10	40 - 20	1 1/4	1.67	1.50	57.7 K=1.00	17. 64 6	1.2272	-4 09.33	21654.80	0.019
T11	20 - 2.333	3x1/2	1.67	1.50	125.0 K=1.00	9.557	1.5000	-151.22	14335.10	0.011

Bottom Girt Design Data (Compression):

Section No.	Elevation	Size	L	L _u	Kl/r	Fa	A	Actual P	Allow. Pa	Ratio P
•	ft		ft	ft		ksi	in²	lb	lЬ	P_a
T2	200 - 180	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-568.73	9170.23	0.062
T3	180 - 160	7/8	1.67	1.46	80.1 K=1.00	15.347	0.6013	-731.73	9228.57	0.079
T4	160 - 140	7/8	1.67	1.50	80.9 K=0.98	15.2 <i>5</i> 0	0.6013	-1258.82	9170.23	0.137
T 5	140 - 120	7/8	1.67	1.50	80.9 K≃0.98	15.250	0.6013	-234.02	9170.23	0.026
T6	120 - 100	7/8	1.67	1.50	80.9 K≔0.98	15.250	0.6013	-862.59	9170.23	0.094
T7	100 - 80	7/8	1.67	1.50	80.9 K≔0.98	15.250	0.6013	-197.21	9170.23	0.022
T8	80 - 60	7/8	1.67	1.50	80.9 K≃0.98	15.250	0.6013	-439.63	9170.23	0.048
Т9	60 - 40	7/8	1.67	1.50	80.9 K≃0.98	15.250	0.6013	-530.50	9170.23	0.058
T10	40 - 20	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-158.01	9170.23	0.017

The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor Retrofit	14 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client	Cellular One	Designed by kellyp

Mid Girt Design Data (Compression):

Section No.	Elevation	Size	L	L_{ν}	KVr	F	Α.	Actual P	Allow. P.	Ratio P
	ft		ft	fî		ksi	in²	lb	lb	P_a
TI	220 - 200	7/8	1.67	1.50	80.9 K=0.98	15.250	.0.6013	-18.23	9170.23	0.002
T2	200 - 180	7/8	1.67	1.50	80.9 K≈0.98	15.250	0.6013	-42.09	9170.23	0.005
T3	180 - 160	7/8	1.67	1.46	80.1 K≈1.00	15.347	0.6013	-134.85	9228.57	0.015
T4	160 - 140	7/8	1.67	1.50	80.9 K=0.98	15.250	0.6013	-5.75	9170.23	0.001

Tension Checks

Leg Design Data (Tension):

Section No.	Elevation	Size	L	L.	KUr	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	fî		ksi	in²	lb	lb	Pa
Tl	220 - 200	2	20.00	1.98	47.4	21.600	3.1416	4467.87	67858.40	0.066
T2	200 - 180	2	20.00	1.98	47.4	21.600	3.1416	17853.20	67858.40	0.263
T3	180 - 160	2 1/2	20.00	1.95	37.4	21.600	4.9087	23388.10	106029.00	0.221
T4	160 - 140	2	20.00	1.95	46.8	21.600	3.1416	13412.20	67858.40	0.198
T5	140 - 120	2	20.00	1.95	46.8	21.600	3.1416	3433.65	67858.40	0.051
T6	120 - 100	2	20.00	1.95	46.8	21.600	3.1416	5110.98	67858.40	0.075
T7	· 100 - 80	2	20.00	1.95	46.8	21.600	3.1416	5108.28	67858.40	0.075
· T 9	60 - 40	2	20.00	1.95	46.8	21.600	3.1416	1145.51	67858.40	0.017

Diagonal Design Data (Tension):

Section No.	Elevation	Size	L	L,	KVr	Fa	A	Actual P	Allow. Pa	Ratio P
	ft		fi	ft		ksi	in ²	lb	lb	P _a
TI	220 - 200	7/8	2.59	2.33	127.7	21.600	0.6013	787.19	12988.50	0.061
T2	200 - 180	7/8	2.59	2.33	127.7	21.600	0.6013	2224.83	12988.50	0.171
T 3	180 - 160	.7/8	2.57	2.25	123.3	21.600	0.6013	2041.35	12988.50	0.157

The Chazen Companies 20 Guriey Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor Retrofit	15 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client		Designed by
	Cellular One	kellyp

Section No.	Elevation	Size	L	. L,	Kl/r	F.	Λ	Actual P	Allow. Pa	Ratio P
• • • • • • • • • • • • • • • • • • • •	ft		ft	fi		ksi	in²	lb	lЬ	P.
T4	160 - 140	7/8	2.57	2.31	126.8	21.600	0.6013	2837.37	12988.50	0.218
T5	140 - 120	7/8	2.57	2.31	126.8	21.600	0.6013	1091.40	12988.50	0.084
T6	120 - 100	7/8	. 2.57	2.31	126.8	21.600	0.6013	2002.73	12988.50	0.154
T7	100 - 80	7/8	2.57	2.31	126.8	21.600	0.6013	1239.10	12988.50	0.095
T8 .	80 - 60	7/8	2.57	2.31	126.8	21.600	0.6013	1051.55	12988.50	0.081
T9	60 - 40	7/ 8	2.57	2.31	126.8	21.600	0.6013	1458.03	12988.50	0.112
T10	40 - 20	7/8	2.57	2.31	126.8	21.600	· 0.6013	1247.22	12988.50	0.096
Tll	20 - 2.333	7/8	2.39	2.16	118.3	21.600	0.6013	785.15	12988.50	0.060

Top Girt Design Data (Tension):

Section No.	Elevation	Size	L	L,	Kl/r	Fa	Λ	Actual P	Allow. P.	Ratio P
710.	- ft		fi	ft		ksi	in²	iь	lb	$\frac{P_a}{P_a}$
Ti	220 - 200	1 1/4	1.67	1.50	57.7	21.600	1.2272	180.14	26507.20	0.007
										V
T2	200 - 180	1 1/4	1.67	1.50	57.7	21.600	1.2272	1194.29	26507.20	0.045
~	180 - 160	1 1/2	1.67	1.46	46.8	21.600	1.7672	631.41	38170.40	0.017
13	100 - 100	1 1/2	1.07	1.40	70.0	21.000	1.7072	031.41	30170.40	0.017
T4	160 - 140	1 1/4	1.67	1.50	57.7	21.600	1.2272	759.28	26507.20	0.029
										10
T5	140 - 120	1 1/4	1.67	1.50	57.7	21.600	1.2272	3001.09	26507.20	0.113
										1
T6 . •	120 - 100	1 1/4	1.67	1.50	57.7	21.600	1.2272	294.90	26507.20	0.011
17	100 - 80	1 1/4	1.67	1.50	57.7	21.600	1.2272	2044.78	26507.20	0.077
17	100 - 80	1 1/4	1.07	1.50	31.1	21.000	1.2272	2044.76	20301.20	9.077 1
T8	80 - 60	1 1/4	1.67	1.50	57.7	21.600	1.2272	244.65	26507.20	0.009
										1
T9	60 - 40	1 1/4	1.67	1.50	57.7	21.600	1.2272	529.22	26507.20	0.020
										4
Tio	40 - 20	1 1/4	1.67	1.50	57.7	21.600	1.2272	617.57	26507.20	0.023
T11	20 - 2.333	3x1/2	1.67	1.50	125.0	21.600	1.5000	252.09	22400.00	0.000
Til	20 - 2.333	3x1/2	1.07	1.50	123.0	21.000	1.3000	232.09	32400.00	0.008
T12	2.333 - 0	3x1/2	1.49	1.32	110.1	21.600	1.5000	2444.55	32400.00	0.075
		<u>-</u>	-					· · · · - -		V

Bottom Girt Design Data (Tension):

The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor Retrofit	16 of 18
Project	:	Date
	10381.00	09:25:57 09/10/03
Client		Designed by
	Cellular One	kellyp

Section No.	Elevation	Size	L	L	KUr	F,	A	Actual P	Allow. Pa	Ratio P
110.	fi		fi	ft		ksi	in ²	iь	ใช้	$\frac{P_a}{P_a}$
Ti	220 - 200	7/8	1.67	1.50	82.5	21.600	0.6013	2340.60	12988.50	0.180
T2	200 - 180	7/8	1.67	1.50	82.5	21.600	0.6013	544.28	12988.50	0.042
Т3	180 - 160	7/8	1.67	1.46	80.2	21.600	0.6013	740.08	12988.50	0.057
- T4	160 - 140	7/8	1.67	1.50	82.5	21.600	0.6013	1415.02	12988.50	0.109
T5	140 - 120	7/8	1.67	1.50	82.5	21.600	0.6013	145.83	12988.50	0.011
Т6	120 - 100	7/8	1.67	1.50	8,2.5	21.600	0.6013	982.91	12988.50	0.076
T7	100 - 80	7/8	1.67	1.50	82. 5	21.600	0.6013	236.33	12988.50	0.018
T8	80 - 6 0	7/8	1.67	1.50	82.5	21.600	0.6013	537.72	12988.50	0.041
T9	60 - 40	7/8	1.67	1.50	82.5	21.600	0.6013	498.41	12988.50	0.038
T10	40 - 20	7/8	1.67	1.50	82.5	21.600	0.6013	246.73	12988.50	0.019
T11	20 - 2.333	3x1/2	1.67	1.50	125.0	21.600	1.5000	2698.92	32400.00	0.083

Mid Girt Design Data (Tension):

Section No.	Elevation	Size	L	L,	Kl/r	Fa	Å	Actual P	Allow. P.	Ratio P
	ft		fi	ft		ksi	in²	lb	lb	P_a
Tl	220 - 200	7/8	1.67	1.50	82.5	21.600	0.6013	18.32	12988.50	0.001
T2	200 - 180	7/8	1.67	1.50	82.5	21.600	0.6013	109.34	12988.50	0.008
T3	180 - 160	7/8	1.67	1.46	80.2	21.600	0.6013	255.62	12988.50	0.020
T4	160 - 140	7/8	1.67	1.50	82.5	21.600	0.6013	107.21	12988.50	0.008
T5	140 - 120	7/8	1.67	1.50	82.5	21.600	0.6013	98.11	12988.50	0.008
Т6	120 - 100	7/8	1.67	1.50	82.5	21.600	0.6013	102.13	12988.50	0.008
T7	100 - 80	7/8	1.67	1.50	82.5	21.600	0.6013	118.05	12988.50	0.009
T8	80 - 60	. 7/8	1.67	1.50	82.5	21.600	0.6013	130.29	12988.50	0.010
T9	60 - 40	7/8	1.67	1.50	82.5	21.600	0.6013	2304.31	12988.50	0.177
T10	40 - 20	7/8	1.67	1.50	82.5	21.600	0.6013	138.90	12988.50	0.011
TII	20 - 2.333	7/8	1.67	1.50	82.5	21.600	0.6013	154.64	12988.50	0.012

The Chazen Companies 20 Guriey Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor Retrofit	17 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client		Designed by
	Cellular One	kellyp

Section Capacity Table

Section	Elevation	Componen!	Size	Critical	P	SF*Pellow	%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
Tì	220 - 200	Leg	2 .	3	-7044.20	57059.73	12.3	Pass
		Diagonal	7/8	24	-769.99	11442.38	6.7	Pass
		Top Girt	1 1/4	4	-185.88	28865.85	0.6	Pass
		Bottom Girt	7/8	7	2340.60	17313.67	13.5	Pass
		Mid Girt	7/8	11	-18.23	12223.92	0.1	Pass
		Guy A@200.25	1/2	471	11486.50	13450.00	85.4	Pass
		Guy B@200.25	1/2	470	8961.99	13450.00	66.6	Pass
		Guy C@200.25	1/2	469	10447.50	13450.00	<i>77.7</i>	Pass
T2	200 - 180	Leg	2	45	-31245.00	57059.73	54.8	Pass
		Diagonal	7/8	82	-2417.64	11442.38	21.1	Pass
		Top Girt	1 1/4	46	1194.29	35334.10	3.4	Pass
		Bottom Girt	7/8	49	-568.73	12223.92	4.7	Pass
		Mid Girt	7/8	52	109.34	17313.67	0.6	Pass
T3	180 - 160	Leg	2 1/2	87	-37699.90	102211.63	36.9	Pass
		Diagonal	7/8	126	-2013.63	11735.30	17.2	Pass
		Top Girt	1 1/2	90	-579.00	43886.22	1.3	Pass
		Bottom Girt	7/8	92	-731.73	12301.68	5.9	Pass
		Mid Girt	7/8	94	255.62	17313.67	1.5	Pass
T4	160 - 140	Leg	2	129	-29405.90	57673.17	51.0	Pass
		Diagonal	7/8	140	-2984.47	11504.71	25.9	Pass
		Top Girt	1 1/4	131	-699.27	28865.85	2.4	Pass
		Bottom Girt	7/8	134	-1258.82	12223.92	10.3	Pass
		Mid Girt	7/8	138	107.21	17313.67	0.6	Pass
T5	140 - 120	Leg	2	171	-18634.50	57673.17	32.3	Pass
		Diagonal	7/8	202	-1053.16	11504.71	9.2	Pass
		Top Girt	1 1/4	172	3001.09	35334.10	8.5	Pass
		Bottom Girt	7/8	176	-234.02	12223.92	1.9 .	Pass
		Mid Girt	7/8	180	98.11	17313.67	. 0.6	Pass
		Guy A@139.75	7/16	474	9813.37	10400.00	94.4	Pass
		Guy B@139.75	7/16	473	7143.64	10400.00	68.7	Pass
		Guy C@139.75	7/16	472	8464.99	10400.00	81.4	Pass
T6	120 - 100	Leg	2	213	-32527.90	57673.17	56.4	Pass
••		Diagonal	7/8	224	-2038.27	11504.71	17.7	Pass
		Top Girt	1 1/4	215	294.90	35334.10	0.8	Pass
		Bottom Girt	7/8	218	-862.59	12223.92	7.1	Pass
		Mid Girt	7/8	222	102.13	17313.67	0.6	Pass
17	100 - 80	Leg	2	255	-32531.00	57673.17	56.4	Pass
••		Diagonal	7/8	291	-1273.58	11504.71	11.1	Pass
		Top Girt	1 1/4	256	2044.78	35334.10	5.8	Pass
	•	Bottom Girt	7/8	261	-197.21	12223.92	1.6	Pass
		Mid Girt	7/8	262	118.05	17313.67	0.7	Pass
		Guy A@99.75	3/8	477	6345.78	7700.00	82.4	Pass
		Guy B@99.75	3/8	476	4342.77	7700.00	56.4	Pass
		Guy C@99.75	3/8	475	5163.27	7700.00	67.1	Pass
T8	80 - 60	Leg	2	297	-29444.30	57673.17	51.1	Pass
10		Diagonal	7/8	308	-1196.21	11504.71	10.4	Pass
		Top Girt	1 1/4	300	244.65	35334.10	0.7	Pass
		Bottom Girt	7/8	302	-439.63	12223.92	3.6	Pass
		Mid Girt	7/8	304	130.29	17313.67	0.8	Pass
T9	60 - 40	Leg	2	339	-35286.60	57673.17	61.2	Pass
17	00 7 0	Diagonal	7/8	363	-1563.82	11504.71	13.6	Pass
		Top Girt	1 1/4	341	-1303.62 -488.15	28865.85	1.7	Pass
		Bottom Girt	7/8	343	-530.50	12223.92	4.3	Pass
		Mid Girt	7/8	343 347	-330.30 2304.31	17313.67	13.3	
		Guy A@50	3/8	480	4686.67	7700.00	60.9	Pass
		Guy B@50	3/8					Pass
			3/8 3/8	479 478	3140.15	7700.00	40.8	Pass
		Guy C@50	ه اد	478	3889.55	7700.00	50.5	Pass

The Chazen Companies 20 Gurley Avenue Troy, New York 121823 Phone: (518) 235-8050 FAX: (518) 235-8051

Job		Page
	New Windsor Retrofit	. 18 of 18
Project		Date
	10381.00	09:25:57 09/10/03
Client	0.11.10	Designed by
	Cellular One	kellyp

Section	Elevation	Component	Size	Critical	P	SF*Pallow	%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
T10	40 - 20	Leg	2	381	-27577.70	57673.17	47.8	Pass
		Diagonal	· 7/8	418	-1449.41	11504.71	12.6	Pass
		Top Girt	1 1/4	382	617.57	35334.10	1.7	Pass
		Bottom Girt	7/8	387	246.73	17313.67	1.4	Pass
		Mid Girt	7/8	388	138.90	17313.67	8.0	Pass
T11	20 - 2.333	Leg	2	421	-22774.60	63175.67	36.0	Pass
		Diagonal	7/8	434	-894.06	11916.87	7.5	Pass
		Top Girt	3x1/2	426	-151.22	19108.69	8.0	Pass
		Bottom Girt	3x1/2	428	2698.92	43189.20	6.2	Pass
		Mid Girt	<i>7/</i> 8	430	154.64	17313.67	0.9	Pass
T12	2.333 - 0	Leg	2	463	-22083.70	49896.05	44.3	Pass
		Top Girt	3x1/2	468	2444.55	43189.20	5.7	Pass
		•					Summary	
						Leg (T9)	61.2	Pass
-	-				-	Diagonal (T4)	25.9	Pass
						Top Girt (T5)	8.5	Pass
						Bottom Girt (T1)	13.5	Pass
	•					Mid Girt (T9)	13.3	Pass
						Guy A (T5)	94.4	Pass
					•	Guy B (T5)	68.7 ·	Pass
						Guy C (T5)	81.4	Pass
						RATING =	94.4	Pass

Program Version 2.0.0.61 - 9/2/2003 File:S:/1/10300-10399/10381.00/structural/10381retro1.eri

NEW WINDSOR ZONING BOARD OF APPEALS In the Matter of the Application of CELLULAR ONE MEMORANDUM OF DECISION GRANTING USE VARIANCE CASE #03-52

WHEREAS, Sunset Crest Realty Corp., owner(s) of 535 Toleman Road, New Windsor, New York, 12553, has made application before the Zoning Board of Appeals for a/an Interpretation and/or Use Variance for telecommunication facility to be located on existing radio tower (48-21M and 48-24 B(3) at 535 Toleman Road in an R-1 zone;

WHEREAS, a public hearing was held on November 10, 2003 before the Zoning Board of Appeals at the Town Hall, New Windsor, New York; and

WHEREAS, the Applicant, represented by Neil J. Alexander, Esquire, Ms. Eva Billeci of Chazen Engineering and Mr. Kevin Brennan of Cellular One appeared on behalf of this Application; and

WHEREAS, there was one spectator appearing at the public hearing; and

WHEREAS, the spectator was neither in favor of or in opposition to the Application, but had questions. He stated that he did not oppose the application; and

WHEREAS, a decision was made by the Zoning Board of Appeals on the date of the public hearing granting the application; and

WHEREAS, the Zoning Board of Appeals of the Town of New Windsor sets forth the following findings in this matter here memorialized in furtherance of its previously made decision in this matter:

- 1. The notice of public hearing was duly sent to residents and businesses as prescribed by law and published in <u>The Sentinel</u>, also as required by law.
- 2. The Evidence presented by the Applicant showed that:
 - (a) There is an existing radio tower, which exists in a residential zone, located in a neighborhood of residential properties.
 - (b) The applicant is a public utility providing wireless telephone service.

- (c) There is a need for cellular wireless service in the area requiring that the applicant install an antenna facility.
- (d) The existing monopole and antenna from a competing wireless carrier is approximately 115' lower in elevation and will not meet the need of this applicant for transmission facilities.
- (e) The site is already enclosed by a fence and if this application is permitted, the applicant will construct a new fence which will be sufficient so that someone cannot climb over the fence and enter the facility.
- (f) The fall zone of the existing tower is within the requirements of the Town of New Windsor Code.
- (g) In constructing the additional items, the applicant will not be removing any trees or substantial vegitation.
- (h) In constructing the applied for items, the applicant will not be creating any water hazards or runoffs or be redirecting the flow of or causing the ponding or collection of water.
- (i) The structure will not be constructed over any easements of any kind.

WHEREAS, The Zoning Board of Appeals of the Town of New Windsor makes the following conclusions of law here memorialized in furtherance of its previously made decision in this matter:

- 1. The Zoning Board of Appeals has conducted a Limited SEQRA Review limited to this application only.
- 2. The Zoning Board of Appeals after considering the materials submitted by the applicant and the proposal, and after hearing from the public has declared a Negative Declaration.
- 3. The applicant is a Public Utility and has shown a need for its services.
- 4. The applicant cannot realize a reasonable return.
- 5. The alleged hardship relating to the property in question is unique and does not apply to a substantial portion of the district or neighborhood.

- 6. The Use Variance, if granted, will not alter the essential character of the neighborhood since the tower itself is already in place and the small building required to service it will have a <u>de minimus</u> impact or effect on the neighborhood.
- 7. The hardship herein has not been self-created since the tower sought to be used by the applicant is already in existence.

NOW, THEREFORE, BE IT

RESOLVED, that the Zoning Board of Appeals of the Town of New Windsor GRANT a request for an Interpretation and/or Use Variance for telecommunication facility to be located on existing radio tower (48-21M and 48-24 B(3) at 535 Toleman Road in an R-1 zone; as sought by the Applicant in accordance with plans filed with the Building Inspector and presented at the public hearing.

BE IT FURTHER

RESOLVED, that the Secretary of the Zoning Board of Appeals of the Town of New Windsor transmit a copy of this decision to the Town Clerk, Town Planning Board and/or Building Inspector and Applicant.

Dated: November 10, 2003

Chairman

TOWN OF NEW WINDSOR ZONING BOARD OF APPEALS OFFICE 845-563-4615

MEMORANDUM

TO:

LARRY REIS, COMPTROLLER

FROM:

MYRA MASON, SECRETARY TO THE ZONING BOARD

DATE:

JANUARY 14, 2004

SUBJECT: ESCROW REFUND - 03-52

PLEASE ISSUE A CHECK IN THE AMOUNT OF \$ 340.00 TO CLOSE OUT **ESCROW FOR:**

ZBA FILE #03-52 (CELLULAR ONE)

NAME & ADDRESS:

CHAZEN ENG. & LS 21 FOX STREET **POUGHKEEPSIE, NY 12601**

THANK YOU,

MYRA

L.R.1-13-2004

TOWN OF NEW WINDSOR ZONING BOARD OF APPEALS RECORD OF CHARGES & PAYMENTS

	TYPE:ARE	. .							
APPLICANT: CELLULAR ONE	E (CHAZEN)								
TELEPHONE:	454-3980								
RESIDENTIAL: COMMERCIAL INTERPRETATION	ON	\$ 50 \$ 150 \$ 150	0.00		CHI	ECK # ECK # ECK #		<u>-</u>	
ESCROW:	COMMERC	CIAL	\$500.00)		CH	ECK i	#27 11	7

* * *	* * *		*	*	*	*	*	*	 *
* * * * DISBURSEMEN	* * *		•	*	* MINU .50 / F	TES	ATT	* ORNI	

*	*	*	*	*	*	*	*	*	*	*	*	*	*
			.,.	,,,	,,,	,,,	,,,	.,.	• • • •			• • •	

TOTAL:

ESCROW POSTED:

\$ 500.00

LESS: DISBURSEMENTS:

\$ 160.00

AMOUNT DUE:

\$

REFUND DUE:

\$<u>340.00</u>

L.R. <u>1-13-04</u>

CELLULAR ONE (CHAZEN ENG.) 03-52

MR. KANE: Request for interpretation and/or use variance for telecommunication facility to be located on existing radio tower (48-21M and 48-24B(3) at 535 Toleman Road in an R-1 zone.

Neil J. Alexander, Esq., Ms. Eva Billeci and Mr. Kevin Brennan appeared before the board for this proposal.

MR. KANE: Is there anybody from the public that's here to speak on this issue? Hold on, we'll get your name and address written on this and when we open to the public, you can ask your questions, sir.

Good evening, my name is Neil MR. ALEXANDER: Alexander, I'm an attorney with the law firm of Cuddy & Also with me is Eva Billeci from the Chazen Company and Kevin Brennan from Cellular One. thing, housekeeping, in all the paperwork we gave Myra, we didn't submit the original short form EAF and there's a copy for the files and all the paper that we buried her with, as the board may be aware, we submitted an application for site plan and special permit to develop a wireless facility that's pending in front of the planning board. During the course of processing a somewhat minimal installation, we ran into a question with the building inspector as to what is the procedural way to get through this, that is our request for an interpretation in the alternative a use Before I get into the, into some of the variance. legal stuff, I want to pull back and talk about what Cellular One is looking to do here and it's very minor what they're looking to do. This is an existing approximately 224 foot tower, radio transmission tower with a lot of antennas. Cellular One wants to put 6 antennas at the 173 foot mark on the facility. antenna is approximately 48 inches by eight inches by 5 1/2 inches. At the ground they want to put in a 12 x 20 foot equipment cabinet which will be fenced and

which will be similar, actually much smaller than the existing 300 foot L-shaped building that's there. That's really all the installation entails. present, the road is not in the world's greatest condition. As part of its application, Cellular One will make substantial improvements to it, put down Item 4, put down oil and shale, can't do anything about making the grade better. As we talked about this with the planning board and we'll talk about this more with them on Wednesday, but I wanted you to understand really what this all about before we really got into sort of why we're here, which is it was Cellular One's understanding after it read the code that the facility that he was creating in the zone was a shared, really fell under the definition of a shared use. there's an existing facility up there, we're going to use it and therefore, it's sharing, different than co-location under your law but in the sense that it wasn't built as a wireless facility, so it's more like what we're doing, putting antennas on top of a rooftop. From Cellular One's perspective, it's not a pivotal issue whether you decided to share use or if you didn't agree with us and want to grant a use variance instead. Cellular One's in the business of providing wireless service, that's really what its most important for us to get and they provide that service. Just so you know, the standard's a little different for when a wireless carrier seeks a use variance in the State of New York Court of Appeals, Cellular One versus Rosenburg, determined that wireless carriers are no different than any utility, like Niagara Mohawk, it's a public utility, needing to provide their service to the So what they need to show you is that there is public. a need that they have to fill and we provided you with a radio frequency report which showed that. Regretably, the Nextel monopole that's across the street is approximately 150 feet lower in elevation and it doesn't work for Cellular One and doesn't meets its need and using this is from Cellular One's perspective a great solution. There is no need to build a new

tower, we're right across from the zone line between commercial and residential so we're as close as you can be to being a commercial property. It's actually residential property that's been used as you know for a long time as a commercial use. So we believe this is a solid application and any questions or any other things we can provide we're here to.

MR. KANE: So if you were to use the Nextel tower, would Cellular One have to build at some point a new tower?

MR. BRENNAN: If we were to use the--

MR. KANE: Nextel tower?

MR. ALEXANDER: They'll give us a lease to use it, it won't fulfill our needs.

MR. KANE: Which means in the future at some point would it be necessary at that point to build another tower to fulfill your needs, a new tower?

MR. ALEXANDER: In the Town as a whole, there's a chance that somewhere, I'm sorry--

MR. KRIEGER: By getting the higher elevation of the tower that you recommend, would that save you the consideration of possibly having to build another tower in the future to get the same coverage?

MR. BRENNAN: If we were--

MR. KRIEGER: If you were on Nextel.

MR. BRENNAN: If we went on Nextel's tower?

MR. KRIEGER: You might well have to build another tower.

MR. ALEXANDER: Yes.

MR. KRIEGER: If you're allowed to co-locate, share on the GNY tower, that would save the possibility?

MR. BRENNAN: If we can on the GNY tower we'll service the balance of New Windsor, which is on the other side of the hill out 207 which the current Nextel tower is at the very, it's only five foot difference in the ground elevation and the 150 foot elevation, so it doesn't even see over that.

MR. KANE: I understand that, I just want to get it all on the record.

MR. BRENNAN: If we went on Nextel.

MR. KANE: If we allow you to do this, we're saving building another tower somewhere down the line.

MR. ALEXANDER: Exactly correct.

MR. BRENNAN: Yes.

MR. MINUTA: I read briefly through some of this. Is there a fence proposed for this site?

MS. BILLECI: Yeah, fencing on the accessway to the equipment building.

MR. MINUTA: And the site itself?

MS. BILLECI: Site's already got fence around the tower so it already closes in, you're using the building on some sides and fence on other but yeah, it's completely squared in now.

MR. BRENNAN: Basically what we're doing is our doorway's going to face the existing building, so our building which is a stone building would act as a

barrier, then we would fence connecting the old building so we would be within the fencing compound of our own entranceway and our building and our cables but we're not fencing in the entire, the balance of the building.

MR. MINUTA: That would be sufficient so that someone can't climb the fence and climb the tower.

MR. BRENNAN: Tower itself is fenced in.

MR. KANE: I think what I'm going to do at this point we have one gentleman in the public is to open up the public portion of this meeting and let this gentleman ask whatever questions he has.

MR. LOREEN: Jerry Loreen (phonetic), Toleman Road. You're going to be putting this on the existing tower, the radio tower?

MR. BRENNAN: Yes.

MR. LOREEN: What kind of affects is it going to be health wise to people, anything?

MS. BILLECI: Nothing.

MR. BRENNAN: Absolutely nothing.

MR. LOREEN: Is there going to be any different looks of it?

MR. BRENNAN: What you will see is our antennas.

MR. ALEXANDER: Our antennas are going to be right here, this is what it would look like, let me give you a color rendering if I can pull it out.

MR. BRENNAN: Which house are you at, sir?

MR. LOREEN: 515 Toleman Road.

MR. ALEXANDER: Here's what exists now, this is what it would look like when it's done, it's going to be the same height difference, the red area, these antennas right here.

MR. KANE: Instead of them, what they're asking to do to be able to use the tower which currently isn't allowed to be used for wireless, if I've got this correct, and there's a wireless tower they could use but if they use that one then in the future they'd have to build a new tower in Town to take care of their needs. Federal regulations makes it very tough to stop them from building that tower, so what we're looking at is using the existing site which is what New Windsor really wants to do.

MR. LOREEN: So basically just going to put this on the tower, not going to be any different or any construction?

MR. BABCOCK: They're building a new shed. Other than that, that's it.

MR. BRENNAN: It's going to be a stone building.

MR. ALEXANDER: At grade, it's a 12 x 20 foot pre-cast, pre-fabricated shelter.

MR. LOREEN: Re-do the road?

MR. ALEXANDER: Yes.

MR. BRENNAN: Is your house on either side?

MR. LOREEN: I'm on the left side of it, probably two houses from it.

MR. KANE: Did they answer your questions, sir?

MR. LOREEN: Yes.

MR. KANE: Anything else?

MR. LOREEN: No.

MR. KANE: Do you have a problem with them doing it this way?

MR. LOREEN: It's only going to be the antennas on there.

MR. KANE: Correct.

MR. KRIEGER: Now, if you were to, hypothetically, if you were to use the Nextel tower, you'd have to add the antenna apparatus on there?

MR. ALEXANDER: Right.

MR. KRIEGER: Same apparatus, just a question of which tower you put it on?

MR. ALEXANDER: Correct.

MR. BABCOCK: I have one thing--

MR. KANE: Let me close the public hearing. You have no further questions?

MR. LOREEN: No.

MR. KANE: Let me close the public portion of the meeting and ask Myra how many mailings we had.

MS. MASON: On the 28th of October, 20 addressed envelopes were mailed out and I had no responses.

MR. KANE: Mike?

MR. BABCOCK: In talking with Mark Edsall, the planning board engineer, we feel that we want to say that if it's, if you do an interpretation of this, it would also be an interpretation that they would not need a special permit at the planning board because they would be there by your interpretation. What that would do is basically eliminate when they go back to the planning board, if they go back and they have to get a special permit, it's going to require them to go for another public hearing at the planning board which we don't feel that they really need to do.

MS. MASON: They're already doing that, they're doing that Wednesday night, they're having a public hearing, they requested to do that.

MR. ALEXANDER: Just so everything's on the up, we're on a very tight time schedule so and we appreciate your bringing that up and we really do, so what we did was we belt and suspendered it, we felt you can schedule a public hearing, if we didn't need it, then I obviously--

MR. BABCOCK: The code says that you can install them and they can be installed as a special permit. This really isn't installing a tower, just putting up the antenna, so we didn't believe that they have to get a special permit. But if they applied and they're going Wednesday night, it's as good as done.

MS. MASON: What Mark said was that we would just tell the public that it's not a requirement by special permit at the public hearing but they're still going to have the public hearing.

MR. BABCOCK: There's one gentleman, I'm sure he's got notice for Wednesday night's meeting.

MR. MINUTA: Special permit would be applicable

strictly to this site just for clarification?

MR. KANE: Yes.

MR. RIVERA: The additional weight, will that diminish the structural integrity of the tower?

MR. BRENNAN: We've done a structural analysis of the tower which is submitted to both the planning board and I believe your board, we have to upgrade the guy cables and that's all we have to do and it falls within the structural analysis.

MR. RIVERA: Thank you.

MR. MINUTA: And the fall zone radius?

MR. BRENNAN: Fall zone radius is within.

MS. BILLECI: It's 30 percent of the tower height.

MR. MINUTA: That's within our regulations.

MS. BILLECI: That's within your, yeah, it's maybe 60 foot diameter and the parcel itself is one acre so it doesn't even fall outside the parcel.

MR. BRENNAN: One other thing that I may say here tonight that that tower is 224 feet, that there's no such thing as a guy tower, it's designed to collapse basically within itself, that tower will never go because of the guys. If you see, there's three separate different guys going up the tower. If the tower itself collapsed, it would collapse within itself because the weaker points are at each of those points coming down. So the towers are designed to collapse within themselves, even the large monopoles won't fall over, they'll bend.

MR. KANE: Not going to be cutting down any trees, cut

through all the little things, trees, substantial vegetation in the building of either the tower, adding on the antennas, the new building that you're putting up there?

MR. ALEXANDER: No.

MR. KANE: Not creating water hazards or runoffs?

MS. BILLECI: No.

MR. KANE: Not over any easements, anything like that?

MS. BILLECI: No.

MR. KANE: Okay, our next thing, Andy, is to take care of the SEQRA.

MR. KRIEGER: First of all, you have to declare that you're going to review it as a limited review, limited to this proceeding only.

MR. KANE: So we're going to do a limited SEQRA review to this meeting only?

MR. KRIEGER: Yes.

MR. KANE: And we'll need to vote on that, gentlemen, I need a proposal.

MR. MINUTA: I make a motion that we make a SEQRA review limited to the purpose of this meeting.

MR. REIS: Second it.

ROLL CALL

MR. REIS AYE MR. MINUTA AYE MR. RIVERA AYE

MR. KANE

AYE

MR. KANE: Need a motion to declare a negative declaration on that.

MR. MINUTA: Make a motion that we declare negative declaration.

MR. RIVERA: Second it.

ROLL CALL

MR. REIS AYE
MR. MINUTA AYE
MR. RIVERA AYE
MR. KANE AYE

MR. KANE: Next step I think is the use variance.

MR. MINUTA: I'd like to make a motion for a use variance for this subject property for Cellular One radio tower at 535 Toleman Road.

MR. REIS: Second it.

ROLL CALL

MR. REIS AYE
MR. MINUTA AYE
MR. RIVERA AYE
MR. KANE AYE

MR. KANE: So we opted not to do the interpretation.

MR. ALEXANDER: Thank you very much.

RESULTS OF Z.B.A TEETING OF:	Novembur 10,2003
PROJECT: Cellular One	ZBA # <u>03-52</u> P.B.#
USE VARIANCE: NEED: EAF Limited Review LEAD ASSENCY: MIMIN S) RS VOTE: A 4 N 0 RIVERA REIS MINUTA KANE REIS A KANE	PROXY NEGATIVE DEC: M) MN s) RV VOTE: A 4 N D RIVERA MCDONALD REIS MINUTA KANE
PUBLIC HEARING: M) S) VOTE: A N RIVERA CARRIED: YN REIS MINUTA KANE	APPROVED: M) N S) 15 VOTE: A 4 NO RIVERA MEDIANALE REIS MINUTA KANE
ALL VARIANCES - PRELIMINARY APPEA	ARANCE:
RIVERA	S) VOTE: A N RIED: Y N
PUBLIC HEARING: STATEMENT OF	MAILING READ INTO MINUTES
VARIANCE APPROVED: M)S)_	VOTE: A
RIVERA MC-BONACD REIS MINUTA KANE	RRIED: YN
Use Variance	
Not Special Permis	7
	· · · · · ·

TOWN OF NEW WINDSOR ZONING BOARD PUBLIC HEARING FOR:

	Cellular	One	
DATE:_	november	10,2003	

SIGN-IN SHEET

	NAME	ADDRESS
1.	Gorald Lorraine	515 Toloman Rd Rock Tave
2.		
		•
	·	
		· · · · · · · · · · · · · · · · · · ·
20		

ZONING BOARD OF APPEALS: TOWN OF COUNTY OF ORANGE: STATE OF NEW Y	ORK
In the Matter of the Application for Variance of	
CELLULAR ONE	
	AFFIDAVIT OF SERVICE
#02.50	BY MAIL
#03-52	
STATE OF NEW YORK)	X
) SS:	
COUNTY OF ORANGE)	
MYRA L. MASON, being duly sworn, dep	poses and says:
That I am not a party to the action, am over Bethlehem Road, New Windsor, NY 12553.	r 18 years of age and reside at 67
That on the 28TH day of OCTOBER , 20 envelopes containing the Public Hearing Notice partified list provided by the Assessor's Office real a variance and I find that the addresses are identically placed the envelopes in a U.S. Depository within	pertinent to this case with the garding the above application for cal to the list received. I then
Sworn to before me this \(\frac{1}{2} \)	lyra Mason
10th day of Novembre 2003	Myra L. Mason, Secretary .
Notary Public Gollagin	JENNIFER MEAD Notary Public, State Of New York No. 01ME6050024 Qualified In Orange County Commission Expires 10/30/ 2006

Town of New Windsor

555 Union Avenue New Windsor, New York 12553 Telephone: (845) 563-4631 Fax: (845) 563-4693

Assessor's Office

October 27, 2003

Chazen Engineering 21 Fox Street Poughkeepsie, NY 12601 Attn: Suzanne Cossa

Re: 29-1-27.51

Dear Ms. Cossa:

According to our records, the attached list of property owners are within five hundred (500) feet of the above referenced property.

The charge for this service is \$35.00, minus your deposit of \$25.00.

Please remit the balance of \$10.00 to the Town Clerk's Office.

Sincerely,

J. Todd Wiley, IAO Sole Assessor

JTW/lrd

CC: Myra Mason, ZBA

29-1-26.11 & 29-1-92 Rock Tavern Village LP 400 BaMar Drive Stony Point, NY 10980

29-1-27.1 David & Mildred Perez 539 Toleman Road Rock Tavern, NY 12575

29-1-27.2 Jay & Diane Oldham 551 Toleman Road Rock Tavern, NY 12575

29-1-27.3 George & Iga Gottlieb 561 Toleman Road Rock Tavern, NY 12575

29-1-27.41 Raymond Czumak 18 Schofield Lane Cornwall, NY 12518

29-1-57.52 Mary Czumak 18 Schofield Lane Cornwall, NY 12518

29-1-28.1 Unitarian Society of Orange County 9 Vance Road Rock Tavern, NY 12575

29-1-28.21 Joseph & Lucy Feola 11 Vance Road Rock Tavern, NY 12575

29-1-28.22 Joseph & Florinda Sabella PO Box 27 Rock Tavern, NY 12575

29-1-29 Carl & Kristi Pacella 5 Vance Road Rock Tavern, NY 12575 29-1-30 Peter & Lisa Lawrence 3 Vance Road Rock Tavern, NY 12575

29-1-31 Gary & Lynn Boyce 1555 Little Britain Road Rock Tavern, NY 12575

29-1-62 William & Phyllis Eich 538 Toleman Road Rock Tavern, NY 12575

29-1-63 Ronald & Deborah Eaton 530 Toleman Road Rock Tavern, NY 12575

29-1-64 Scott & Ann Miller 141 Bruynswick Road New Paltz, NY 12561

29-1-91 Stowaway Self Storage VII, LLC 580 Toleman Road Rock Tavern, NY 12575

52-1-15.1 Craig & Carrie Callahan 527 Toleman Road Rock Tavern, NY 12575

52-1-58.1 Lonnie & Lawrence Richardson 521 Toleman Road Rock Tavern, NY 12575

52-1-58.2 Gerald & Debra Lorraine 515 Toleman Road Rock Tavern, NY 12575

52-1-58.3 Patricia Naf C/o Elaine Dominquez 229 Conklintown Road Goshen, NY 10924

PUBLIC HEARING NOTICE

ZONING BOARD OF APPEALS

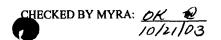
TOWN OF NEW WINDSOR

PLEASE TAKE NOTICE that the Zoning Board of Appeals of the TOWN OF NEW WINDSOR, New York, will hold a Public Hearing pursuant to Section 48-34A of the Zoning Local Law on the following Proposition:

Appeal No. 03-52

Request of CELLULAR ONE

for a VARIANCE of the Zoning Local Law to Permit:


INTERPRETATION AND/OR VARIANCE FOR CO-LOCATION OF TELECOMMUNICATIONS FACILITY ON TALL STRUCTURE IN R-1 ZONE.

for property located at: 535 TOLEMAN ROAD – NEW WINDSOR, NY

known and designated as tax map Section 29, Block 1, Lot 27.51,

PUBLIC HEARING will take place on NOVEMBER 10TH, 2003 at the New Windsor Town Hall, 555 Union Avenue, New Windsor, New York beginning at 7:30 P.M.

Michael Kane, Chairman

TOWN OF NEW WINDSOR REQUEST FOR NOTIFICATION LIST

DATE: <u>10-21-03</u>	PROJECT NUMBER: ZBA# XXX P.B.#
APPLICANT NAME: CEL	LULAR ONE (CHAZEN ENG.)
PERSON TO NOTIFY TO I	PICK UP LIST:
CHAZEN ENGINEERING 21 FOX STREET	G (EVA BILLECI)
POUGHKEEPSIE, NY 12	<u>601</u>
TELEPHONE: 454-3	<u>980</u>
TAX MAP NUMBER:	SEC. 29 BLOCK 1 LOT 27.51 SEC. BLOCK LOT LOT SEC. BLOCK LOT LOT
PROPERTY LOCATION:	535 TOLEMAN ROAD NEW WINDSOR
THIS LIST IS BEING REQ	UESTED BY:
NEW WINDSOR PLANNIN	NG BOARD:
SITE PLAN OR SUBDIVIS	ION: (ABUTTING AND ACROSS ANY STREET
SPECIAL PERMIT ONLY:	(ANYONE WITHIN 500 FEET)
AGRICULTURAL DISTRIC (ANYONE WITHIN THE A OF SITE PLAN OR SUBDI	AG DISTRICT WHICH IS WITHIN 500'
* * * * * * *	* * * * * * * * * * * * * * * *
NEW WINDSOR ZONING	BOARD XXX
LIST WILL CONSIST OF A	ALL PROPERTY WITHIN 500 FEET OF PROJECT XXX
* * * * * * *	
AMOUNT OF DEPOSIT:	25.00 CHECK NUMBER: 27118
TOTAL CHARGES:	

CELLULAR ONE (CHAZEN ENG.) (#03-52)

MR. KANE: Request for interpretation and/or use variance for telecommunication facility to be located on existing radio tower (48-21M and 48-24 B(3)) at 535 Toleman Road in an R-1 zone.

Mr. Chris Fisher and Ms. Eva Billeci appeared before the board for this proposal.

MR. KANE: Could you both sign in so we have your name for the stenographer please? Thank you.

MR. FISHER: This is actually a pretty straightforward application. We/re proposing to put 9 panel antennas and this is a WGNY, they're existing in Town on the existing tower below the existing height, that's what they'll look like. There's already at the base of the tower about 225 foot tower, this is about 175 feet plus minus at the base of the tower. Now there's already an equipment shelter that has all the electronics through the broadcast facilities that are there. We're going to put another shed next to it, about 300 square feet so it's a little bit bigger than your average but not To enclose, 240, that will just enclose the electronics for the cellular telephone antennas. only reason we're here we had an application before the planning board, there's this question on the zoning code as to whether or the intent of the Town Board when they adopted the wireless regulations was to allow these even as a co-located facility on the existing tower because this happens to be a residential zone. When we looked through the code, everything that you read throughout the code says co-locations preferred, we don't want new towers. We want you to co-locate the facilities and if you propose a new tower, prove to us why you can't do something like this. There's another section of the code that says these regulations apply to various zoning districts, mostly commercial and industrial zones, the way we look at that the way which makes the most sense in interpreting the code would be this is allowed but you wouldn't allow a new tower in residential zone and I think this is probably what the Town Board was going for when they adopted the regulations. I'd be really surprised if they said this

little antenna on an existing tower that's there are there and legal requires a use variance, but we have asked for that in the alternative, in the event that you didn't find that the interpretation was appropriate so we can get the facility permitted. We've got to go back to the planning board for a special permit and site plan no matter what, we've got two boards, we're asking for a hearing, the planning board has scheduled a hearing, I believe for this meeting, which would be a couple days after your next available date. So we're hoping to get a hearing and if all works well, we can get your approvals.

MR. KANE: Did you read the package? Do you have any questions?

MR. MINUTA: I have a couple questions. With regard to the tower itself, the tower will substantially hold the proposed antennas? You have an engineering report for that?

MR. FISHER: Chazen did a structural which was in the package that demonstrates that.

MR. MINUTA: Does this existing tower, has it been designed to have a fall zone of one half its height?

MR. FISHER: I'm not sure what the existing design engineering would be on this guy tower. I don't know if you want to answer that question.

MS. BILLECI: How this one falls, no, I think the setbacks are around that.

MR. FISHER: A guy tower falls substantially different than what you're seeing in monopolls.

MR. MINUTA: I'm familiar, I've designed about 120 of them myself.

MR. FISHER: They don't fall over, they come down.

MR. MINUTA: Be designed to have a halfway break point. My question is does this tower have that?

MR. FISHER: Well, my own understanding, although I'm not an engineer of guy tower facilities is that they don't actually bend over or fall over, it would be a yield point halfway but they're sectioned and due to the different guy tensions that they'd collapse more down into the property which supports them. I don't know the answer and honestly, with respect to both the interpretation and use variance relief we've sought, I'm not, because of its location, it's really not a criteria that's in the wireless regulations, if it was a new tower, you'd have certain standards certainly.

MR. MINUTA: Correct, but you're asking for a variance on this. I have no issues with that, I think what you're doing here is commendable, trying to put it on the existing tower without building a new one. My question does relate to, however, the fall zone, which is more of a planning board issue so I should, I will direct it to them for a question at that time.

MR. FISHER: We can try and find out.

MR. KRIEGER: You should be aware that the purpose of the preliminary hearing is so that you can find out as much as the board can find out what the application is so you can find out what the concerns of the various members of the board are so that you'd be better prepared at the time of the public hearing to address these questions.

MR. KANE: If you can get that information for the public hearing or as much as is available to you we'd appreciate that.

MR. FISHER: Sure.

MR. KRIEGER: Certainly I should think the board would want to know what's around the tower.

MR. KANE: Is there a home within 200 feet of the tower?

MS. BILLECI: Nearest property line is a hundred and--

MR. KANE: If you can do that, we'd like to know.

MR. FISHER: Obviously, we have properties that are within the 500 foot notice.

MR. BABCOCK: I have a map here of where the existing tower's supposed to be and it's the proposed location and it's about 150 feet diagonally to the property line, 145, 148, 144 and 139, it's pretty much dead center of the piece of the property.

MR. FISHER: So try to look at the area, see where the house is in relation.

MR. KANE: Lot of trees around the tower?

MS. BILLECI: It's pretty much cleared out around the tower and then there's trees surrounding the property line shielding it from the residences.

MR. KANE: Okay.

MR. REIS: It's a very rural area right there, I think the closest house to it physically to it is probably 300 feet or so.

MR. KANE: Approximately.

MR. MC DONALD: You're going to be at 175 feet?

MR. FISHER: That's correct.

MR. KANE: The other concern was that if you can for the public hearing make sure you're going to put 9 on there, we want to make sure that it can handle that.

MR. MINUTA: Yes.

MS. BILLECI: We did a performance structural analysis, we do have some of the guy wires are old and frayed so we do suspect they'll need to be replaced and one of the things that Town engineer asked for was a detail for that so we'll provide that.

MR. MINUTA: I did have one final question and my question is with respect to there's another tower

located across the street and I'm wondering why you couldn't, that question is going to be raised anyway so we'll raise it here, so you can answer it, why can't you locate on that tower?

MS. BILLECI: Topographically, it doesn't work. If you look at this radio tower, it's up on a hill. You're literally probably about 150 foot up the hill from where the next cell tower is, base elevation, and the available, next available height is 130 feet, the available height on this is 170 so you're literally getting 100 feet higher by co-locating on this radio tower versus going on the Nextel tower.

MR. MINUTA: So you're eliminating radio frequency shadowing?

MS. BILLECI: Getting a better area.

MR. BRENNAN: Kevin Brennan from Cellular One. The hill that the tower zone, right now, the radio tower versus the other, if you were to go out there and stand at the elevations, they have their tower that it just barely gets over that hill that exists, okay, if we went onto that new tower, we'd have to go lower, the differential that we have to get to get the same propagations that we get now are some 75 feet higher on that new tower. And one of other questions when we first started was why that tower was built and not co-located on the radio tower cause we interpreted the law a little differently.

MR. MINUTA: Did you find an answer?

MR. BRENNAN: Yes, sir, answer was to--

MS. BILLECI: We were told that Nextel doesn't co-locate and they wanted to build their own towers.

MR. BRENNAN: That's what they told the Town. So I don't know why we're not, I can't get into it, but I can tell you we addressed it and we looked at it very seriously because we figured there must have been a reason that one was at the other.

MS. BILLECI: We provided RF propagation counts showing why the Nextel tower doesn't work and the radio tower does and they're in that package, they're in your package.

MR. KANE: Anything else?

MR. MINUTA: I'm all set, yes, thank you.

MR. KRIEGER: Okay, couple of things here. all, with respect to the towers, I don't know if this is the case for this particular tower or not, but just for the board's information, the cell tower law in New Windsor requiring co-location has been referred to previously encouraging co-location, co-location was actually enacted after one or more cell towers had been erected in this Town, whether this predate, whether this tower predates that law or not, I don't know. that's one of the reasons why a different standard might be applied to this applicant than appears to have been applied to Nextel at the time they built their Secondly, I want to mention to the board that I tower. have been in contact with the attorney for the, and a substantial conversation with the attorney for the applicant here with regard to the legal issues which are substantial. Without belaboring a point, this falls into what appears to be a bit of a gray area and as a result of that conversation, it was my suggestion that they come here as they are tonight to explain to the board what they want to do. And a mechanism that you're probably familiar with is for an interpretation and/or use variance, in this particular case, you may want to consider the use variance cart before the horse, if you will, you may want to consider the use In my conversations with the applicant, it variance. appears that they're seeking permission to use the tower, they really are not necessarily wedded to it being an interpretation or a use variance, they don't apparently care. You may. With respect to the use variance, there's going to be, there is by virtue of the Federal Law controlling this area a somewhat if you will relaxed standard than would normally appear for use variances, according to the State Law, it was my suggestion to the applicant's attorney that a presentation be made at the time of the public hearing

which would cover all the basics for a use variance, just as if it were under the State Law. My feeling was if this board was comfortable with that, they would certainly be comfortable with the lesser standard. We don't have to get into that issue of do they need the lesser standard and does that apply and so forth and becomes moot if they meet the standard. So with that, I will further advise the board as it wishes when this application comes up for a--

MR. KANE: You'll be prepared for the public hearing to address the use, five points of the use variance just in case?

MR. FISHER: We'll be prepared to address it. The only thing I'd say is that technically we're a public utility. Under New York State law which as was mentioned relaxes it, the only thing we wouldn't be prepared and because it's not relevant is the dollars and cents thing, if you were on a typical use variance application someone was saying I can't make an economic return for commercial, therefore, let me do residential or vice versa, you'd expect some kind of proof. We wouldn't have that kind of proof.

MR. KRIEGER: I have discussed that aspect with the attorney for Cellular One and suggested ways in which they arguably might be able to meet that test. It's my understanding they will therefore be prepared to so do and they certainly would have the advantage of the relaxed standard of the Telecommunications Act if that's necessary.

MR. KANE: Okay, Len, Steve, anything?

MR. MCDONALD: No.

MR. RIVERA: No.

MR. MINUTA: Mr. Chairman, two more questions, brief. By co-locating on this tower, would this prevent you from having to locate another tower closely? What's the range of the antenna?

MR. FISHER: Yeah, I think the answer to that is the

higher we get, the more wide area coverage we'd get, reducing the need for other towers. The RF plots have it but I'm not an RF engineer, but maybe Kevin, you can interpret this a little bit?

MR. BRENNAN: This site is to fill in that gap on 207, both in the Rock Tavern and into New Windsor-Toleman Road going out to the airport. And it hands off to our other side in New Windsor and the new site we built on the water tower at Stewart, and this should handle that whole area. If there's anyplace that there's a question of a future tower, it will be in the Salisbury Mills area over on that side. These sites are now almost four to five miles that they, six miles maximum they're apart, they cover approximately three miles around and that's what we're working on right now.

MR. MINUTA: The second part of that question is in the propagation map. Have you provided other sites where they're located adjacent to this one?

MS. BILLECI: Yes.

MR. FISHER: Yes.

MR. MINUTA: Thank you.

MR. KANE: Do I hear a motion?

MR. MINUTA: Accept a motion?

MR. KANE: Yes, I will.

MR. MINUTA: Make a motion that we move Cellular One Chazen Engineering to a public hearing for their requested interpretation and/or use variance for telecommunications facility to be located on the existing radio tower.

MR. MCDONALD: Second it.

ROLL CALL

MR. REIS AYE MR. MINUTA AYE

October 27, 2003

MR.	RIVERA		AYE
MR.	MC DONALD	•	AYE
MR.	KANE		AYE

PROJECT: Cellular One	ZBA # <u>03-52</u> P.B.#
USE VARIANCE: NEED: EAF	PROXY
LEAD AGENCY: M) S) VOTE: A N RIVERA CARRIED: Y N KANE	NEGATIVE DEC: M)S)VOTE: AN RIVERA MCDONALD REIS MINUTA KANE
PUBLIC HEARING: M)S)VOTE: ANRIVERAMCDONALDCARRIED: YNREISMINUTA KANE	APPROVED: M) S) VOTE: A N N N N N N N N N N N N N N N N N N
ALL VARIANCES - PRELIMINARY APPE	ARANCE:
RIVERA /T	YN S)MC VOTE: A 5 N C
PUBLIC HEARING: STATEMENT OF	F MAILING READ INTO MINUTES
VARIANCE APPROVED: M)S)_	VOTE: A N
RIVERA MC DONALD CAI REIS MINUTA	RRIED: YN
KANE	g
Need to Cusives the boards	questions for toposto P. H.

PROJECT I.D. NUMBER: 10381.00

617.20 Appendix C

State Environmental Quality Review

SHORT ENVIRONMENTAL ASSESSMENT FORM

For UNLISTED ACTIONS Only

PART I - PROJECT INFORMATION (To be completed by Applicant or Project Sponsor)

1.	APPLICANT/SPONSOR Cellular One	2. PROJECT NAME Cellular One New Windsor
3.	PROJECT LOCATION: Municipality 535 Toleman Road, New Windsor County C	Orange
4.	PRECISE LOCATION (Street address and road intersections, pror 535 Toleman Road, Southwest of the intersection of	
5.	IS PROPOSED ACTION:	
	☐ New ■ Expansion ☐ Modification/alter	ration
6.	DESCRIBE PROJECT BRIEFLY: Adding telecommunications antennas to existing towe of a 12 x 20 unmanned equipment building at the bas	er (not increasing the height of the tower) and placement se of the tower.
7.	AMOUNT OF LAND AFFECTED:	
	Initially: .005(+/-) acres Ultimately:	:005(+/-) acres
8.	WILL PROPOSED ACTION COMPLY WITH EXISTING ZONING OF EYES ■NO If No, describe briefly. Request for a Variance, is being sought.	OR OTHER EXISTING LAND USE RESTRICTIONS? Zoning Interpretation, or in the Alternative a Use
9.	WHAT IS PRESENT LAND USE IN VICINITY OF PROJECT?	
	•	riculture Park/Forest/Open space Other:
	Describe: Houses, Storage Facility & Telecommunicat	
	DOES ACTION INVOLVE A PERMIT APPROVAL, OR FUNDING, AGENCY (FEDERAL, STATE, OR LOCAL)?	, NOW OR ULTIMATELY FROM ANY OTHER GOVERNMENTAL
	■Yes □No If Yes, list agency name and permit/appr Variance (unlisted action); Planning Board: Site Plan	roval. Zoning Board of Appeals: Interpretation/Use Approval & Building Permit
11.	DOES ANY ASPECT OF THE ACTION HAVE A CURRENTLY VA	ILID PERMIT OR APPROVAL?
	□Yes ■No If Yes, list agency name and permit/approval.	
12.	AS A RESULT OF THE PROPOSED ACTION WILL EXISTING PE	ERMIT/APPROVAL REQUIRE MODIFICATION?
	⊡Yes ■No	
	I CERTIFY THAT THE INFORMATION PROVIDED &	ABOVE IS TRUE TO THE BEST OF MY KNOWLEDGE
Apr	plicant/sponsor nae: Eva Billeci_for Cellular One	Date: October 24, 2003
Sig	gnature: 6va & Bullec	<u>.</u>

If the action is in the Coastal Area, and you are a State agency, complete the Coastal Assessment Form before proceeding with this assessment.

											ESSM												
A.					D AN	Y TYP	EITH	RESHO	OLD IN	6 NYC	RR, PAF	RT 6	17.4? 1	f yes, c	oordir	nate the	review	proce	ss and	i use i	the FUI	.L.EA	F.
В.	ded	L ACTI	n may	ECEIV be su			NATED another				DED FO	R UI	NLISTE	D ACTI	IONS	IN 6 N	CRR,	PART	617.6	? If N	o, a ne	gative	
C.		JLD AC Existin	g air (RESU quality,	surfa	ce or g	groundw	vater q	quality o	or quanti	OCIATED ity, noise in briefly	e leve											
	C2.	Aesthe	etic, a	gricultu	ıral, ar	chaeo	logical,	histori	ic or oth	her natu	ıral or cu	ultura	l resou	rces; or	r comi	munity o	or neigl	nborho	od cha	aractei	r? Expi	lain bı	iefly:
	C3.	Veget	ation o	or faun	a, fish	, shellf	ish or w	vild!ife	species	s, signifi	icant hat	bitats	s, or thr	eatened	d or e	ndange	red spe	ecies?	Expla	in brie	efly:		
		A com briefly:		r's exis	iting p	lans o	r goals :	as offic	cially a	dopted,	or a cha	ange	in use (or inten	sity o	f use of	land o	r other	natura	al reso	ources?	Expl	ain
	C5.	Growti	ı, sub	sequer	nt deve	elopme	ent, or r	elated	activiti	ies likely	/ to be in	nduce	ed by th	ie propo	osed a	ection?	Explai	n brief	ły:				
	C6.	Long to	em, s	hort te	rm, cu	ımulati	ve, or c	ther e	ffects n	ot ident	tified in C	C1 –	C5? E	xplain b	oriefly:	:							
	C7.	Other i	mpac	ts (incl	uding	chang	es in us	se of e	ither qu	antity o	or type of	f ene	ergy)? I	Explain	briefl	y:							
D.	WILI	THE	PROJ	ECT H	AVE /	AN IMI	PACT C)N THE	E ENVI	IRONME	ENTAL (CHAI	RACTE	RISTIC	STH	AT CAL	JSED 1	HE E	STABL	ISHM	ENT O	FAC	EA?
	□ Y																						
E.	D Y						xplain b			RSY RE	LATED	101	POIEN	HAL A	DAFL	KSE EN	VIRON	IMEN	AL IM	PACT	S?		
PAI	signi (c) d supp ident	RUC' ficant. uration orting tified a	Factors; (d) mate	S: Fo h effe irreve erials. dequa	r eac ct sho rsibili Ensu tely a	h advo ould b ity; (e) ure tha addres	erse et e asse geogr at expla sed. I	fect ions sed the second secon	dentifice in con cope ons cor stion D	ed abovenection e; and (ntain su of Par	be comve, detent with its (f) magrufficient til was eenviront	ermir s (a) nitud t det s che	ne when setting the letting to the l	ether it g (i.e. o ecessa how th yes, the	is su urbar ary, a nat ali e det	n or rur add atta I releva ermina	al); (b achme int adv tion a) prob ents or erse nd sig	ability r refer impac	of oo ence ts ha	curring ve bee	g;	
		Then	proc	eed c	lirect	ly to t	the FL	JLL E	EAF ar	nd/or p	e poter prepare	eap	positiv	e dec	larat	ion.			•			AY oo	ccur.
		docui	nent	ation,	that	the p	ropos	ed a	ction \	WILL N	on the in NOT reconstance	sult	in an	y sign	ifica	nt adv	erse.					ts Al	1D .
									***************************************	Nar	me of Le	ead A	gency									_	
	F	rint or	Туре	Name	of Res	ponsil	ble Offic	cer in L	_ead A	gency	-	-			T	itle of R	espons	sible O	fficer				
		Sig	natur	e of Re	spons	sible O	fficer in	Lead	Agenc	у	-	-	Signa	ture of	Prepa	erer (if o	lifferen	t from	respor	sible	officer)		
							_				Date			<u>.</u>									

Town of New Windsor 555 Union Avenue New Windsor, NY 12553 (845) 563-4611

RECEIPT #993-2003

10/22/2003

Chazen Engineering #03-52

Received \$ 150.00 for Zoning Board Fees, on 10/22/2003. Thank you for stopping by the Town Clerk's office.

As always, it is our pleasure to serve you.

Deborah Green Town Clerk

TOWN OF NEW WINDSOR ZONING BOARD OF APPEALS

RECEIPT OF ESCROW RECEIVED:

DATE RECEIVED: 10-21-03

FOR: **ESCROW 03-52**

FROM:

CHAZEN ENG. & L. S. (FOR CELLULAR ONE

21 FOX STREET

POUGHKEEPSIE, NY 12601

CHECK NUMBER: 27117

AMOUNT:

500.00

REGEIVED AT COMPTROLLER'S OFFICE BY:

NAME

DATE

PLEASE RETURN SIGNED COPY TO MYRA FOR FILING
THANK YOU

Town of New Windsor

555 Union Avenue

New Windsor, New York 12553 Telephone: (845) 563-4615 Fax: (845) 563-4695

ZONING BOARD OF APPEALS

October 21, 2003

Chazen Engineering & Land Surveying 21 Fox Street Poughkeepsie, NY 12601

ATTN:

EVA BILLECI

SUBJECT:

CELLULAR ONE - ZBA FILE #03-52

Dear Ms. Billeci:

This letter is to inform you that you have been placed on the October 27th, 2003 agenda for the Zoning Board of Appeals to discuss your request for a variance at:

535 Toleman Road New Windsor, NY

This meeting starts at 7:30 p.m. and is held in the Town Meeting Room at Town Hall. If you have a problem with this time and/or date, please contact me at the above number and we will reschedule your appearance. If you have any further questions, please feel free to contact me.

Very truly yours,

Myra Mason, Secretary Zoning Board of Appeals

MLM:mlm

cc: Neil J. Alexander, Esq. - Cuddy & Feder

OFFICE OF THE PLANNING BOARD TOWN OF NEW WINDSOR ORANGE COUNTY, NY

NOTICE OF DISAPPROVAL OF PLANNING BOARD APPLICATION

PLANNING BOARD FILE NUMBER: 03-29

DATE: 10-15-03

APPLICANT:

CELLULAR ONE - C/O KEVIN BRENNAN 1351 RT. 55 LA GRANGEVILLE, NY 12540

PLEASE TAKE NOTICE THAT YOUR APPLICATION:

DATED: 9/17/03

FOR: SITE PLAN

LOCATED AT: WEST SIDE OF TOLEMAN ROAD - TOWN OF NEW WINDSOR

ZONE: R-1

DESCRIPTION OF EXISTING SITE: SEC: 29 BLOCK: 1 LOT: 27.51

IS DISAPPROVED ON THE FOLLOWING GROUNDS:

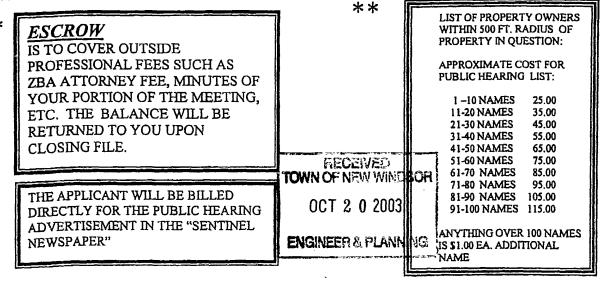
INTERPRETATION AND/OR VARIANCE NEEDED REGARDING
TELECOMMUNICATIONS FACILITIES TO BE LOCATED ON EXISTING RADIO
TOWER IN AN R-1 ZONE.

TOWN OF NEW WINDSOR CODE: 48-21 M AND 48-24 B (3)

MICHAEL BABCOCK, BUILDING INSPECTOR

TOWN OF NEW WINDSOR

555 UNION AVENUE NEW WINDSOR, NY 12553 (845) 563-4615 (MYRA MASON)


ZONING BOARD PROCEDURES

PLEASE READ PAGE ONE AND TWO OF THIS PACKAGE AND SIGN PAGE TWO IT EXPLAINS THE PROCEDURE TO BE FOLLOWED FOR YOUR APPLICATION.

PLEASE COMPLETE THE ATTACHED APPLICATION FORMS WHERE IT APPLIES TO YOUR SITUATION AND RETURN TO MYRA MASON (845-563-4615) AT THE ZONING BOARD OFFICE (LOCATED IN THE PLANNING BOARD & ENGINEERING OFFICE IN TOWN HALL) WITH THREE CHECKS MADE PAYABLE TO "THE TOWN OF NEW WINDSOR" AS FOLLOWS:

RESIDENTIAL: (Three Separate Checks Please)	
APPLICATION FEE:	\$ 50.00
*ESCROW:	\$300.00
** <u>DEPOSIT</u> FOR PUBLIC HEARING LIST:	\$ 25.00
MULTI-FAMILY: (Three Separate Checks Please)	
APPLICATION FEE:	\$150.00
*ESCROW:	\$500.00
**DEPOSIT FOR PUBLIC HEARING LIST:	\$ 25.00
COMMERCIAL: (Three Separate Checks Please)	
APPLICATION FEE:	\$150.00
*ESCROW:	\$500.00
**DEPOSIT FOR PUBLIC HEARING LIST:	\$ 25.00
INTERPRETATION: (Three Separate Checks Please)	·· ·- :
APPLICATION FEE:	\$150.00
*ESCROW:	\$500.00
**DEPOSIT FOR PUBLIC HEARING LIST:	\$ 25.00

YOU WILL THEN BE SCHEDULED FOR THE NEXT <u>AVAILABLE</u> AGENDA FOR YOUR "PRELIMINARY MEETING".

FOLLOWING YOUR PRELIMINARY MEETING, THE ZONING BOARD SECRETARY WILL ORDER YOUR "PUBLIC HEARING LIST" FROM THE ASSESSOR'S OFFICE.

- 1. WHEN THE ASSESSOR'S OFFICE NOTIFIES YOU THAT YOUR LIST IS READY, YOU MUST COME IN AND PAY THE BALANCE DUE FOR THE LIST. (THIS WILL BE PREPARED ON LABELS FOR YOUR CONVENIENCE).
- 2. PREPARE AN ENVELOPE (self-sealing envelopes are much appreciated) FOR EACH LABEL WITH YOUR RETURN ADDRESS AND A REGULAR \$.37 STAMP. BRING THE PREPARED ENVELOPES AND A COPY OF THE LIST TO THE ZONING BOARD SECRETARY FOR MAILING. YOUR PUBLIC HEARING DATE WILL BE SCHEDULED AT THIS TIME.

NOTE:

IF IT IS EASIER FOR YOU, YOU CAN BRING THE ENVELOPES WITH YOU WHEN YOU PICK UP AND PAY FOR YOUR LIST. YOU CAN PUT THE LABELS ON AT THAT TIME AND BRING THEM TO THE ZBA OFFICE FOR COMPLETION.

MUST READ AND SIGN #

I UNDERSTAND THAT I WILL BE BILLED DIRECTLY FOR MY "LEGAL NOTICE" TO BE PUBLISHED IN THE SENTINEL NEWSPAPER FOR MY PUBLIC HEARING....(this charge is not deducted from your escrow posted).

TURE DATE

NOTE:

THE ZBA MEETS ON THE 2^{ND} AND 4^{TH} MONDAY OF EACH MONTH UNLESS A HOLIDAY FALLS ON THAT DATE. (JULY AND AUGUST – ONE MEETING PER MONTH ONLY)

RECEIVED TOWN OF NEW WINDSOR

OCT 2 0 2003

ENGINEER & PLANNING

PAGE 2

03 - 52

COMPLETE THIS PAGE

TOWN OF NEW WINDSOR ZONING BOARD OF APPEALS

APPLICATION FOR VARIANCE

Date	Application Type:	Use variance	☐ Area varianc
		Sign Variance	☐ Interpretation
Owner Information:			(845) 561-213
Sunset Crest Realty Corp		Fax Number:	(845) 561-2 <u>1</u> 3
c/o (Name) Robert Maine			
WGNY, PO Box 2307, Newbu			
(Address) Applicant;	Cellular One		
If Moving to New Address, pl	_	address for ret Phone Number:	
(Name)		Fax Number:	
(Ivame)		rax rumides.	
(Address)			
Attorney: Neil J. Alexand	er, Esq.	Phone Number:	(914) 761-130
Cuddy & Feder]	Fax Number:	(914) 761-537
(Name)			
90 Maple Avenue, White P	lains, NY 10601-5	196	
(Address)			
		•	
Contractor/Engineer/Archited	ct/Surveyor/:	Phone Number	(845) 454-3980
يهيروني ووالداني بالسهيد المستعددات المتدانات بالمستسيدوني وال	[ران در در مساحب بالمعالم المعالم	?ax Number: -	(845) 454-402
Chazen Engineering & Land	Surveying Co., P	.C. c/o Eva E	illeci .
(Name) 21 Fox Street, Poughkeeps	ie. NY 12601	÷	
	10, 11 12001		
(Address)			
Property Information:			
Property Information:			
Zone: R1 Property	Address in Question:	535 Tolomon	Dond
Tot Size: acre +/ Tay Ma	p ramber, becausi		1 1 of 27 1
Lot Size: 1 acre +/-Tax Ma	SON feet? (OTT) OF		
a. What other zones lie within		ice and ligh	t industry
a. What other zones lie withinb. Is pending sale or lease subj	ect to ZBA approval	ice and ligh of this Applicati	t industry
a. What other zones lie withinb. Is pending sale or lease subjc. When was property purchas	ect to ZBA approval ed by present owner?	fice and ligh of this Applicati	t industry on? No
 a. What other zones lie within b. Is pending sale or lease subj c. When was property purchas d. Has property been subdivide 	ect to ZBA approvaled by present owner? ed previously?No	ice and ligh of this Applicati If so, W	t industry on? No
 a. What other zones lie within b. Is pending sale or lease subj c. When was property purchas d. Has property been subdivide e. Has an Order to Remedy Vi 	ect to ZBA approval ed by present owner? ed previously? No olation been issued as	ice and ligh of this Applicati If so, W	t industry on? No
 a. What other zones lie within b. Is pending sale or lease subj c. When was property purchas d. Has property been subdivide 	ect to ZBA approval ed by present owner? ed previously? No olation been issued agotor? No	of this Application If so, Wigainst the proper	t industry on? No hen: ty by the

TOWN OF NEW WINDSOR ZONING BOARD OF APPEALS

APPLICATION FOR VARIANCE - continued

Secti	on <u>48-21-</u> ,MTable	of	R-1	Regs., Co	1	A,B,M
Desc	ibe proposal:					
the	<u> </u>					co-location of 6 antennas Cuddy & Feder, LLC for m
	rmation, provid					odddy a readry bbo ror m
			·			
•						
The le	gal standard for a	. "Use '	Variance" i	s unnecessary l	nards	ship. Describe why you feel
unnec	essary hardship w	ill resu	ılt unless th	e Use Variance	is g	ranted. Also state any efforts ye
unnec	essary hardship w	ill resu	ılt unless th	e Use Variance	is g	
unned have	essary hardship w nade to alleviate t	ill resu he hare	ılt unless th İship other	ne Use Variance than this applic	is g	ranted. Also state any efforts yen,
unned have:	essary hardship w nade to alleviate t the alternative	ill resu he hard	ult unless the diship other	e Use Variance than this applic	is g cation	ranted. Also state any efforts you
have:	essary hardship w nade to alleviate t the alternative lic utility, ha	ill resu he hard e to i	olt unless the diship other ot	e Use Variance than this applice st for inter a use varian	e is g cation	ranted. Also state any efforts you ation, Cellular One, as a under the Public Necessit
In pub	essary hardship w nade to alleviate t the alternative lic utility, handards and mee	ill resu he hard e to i as app ts tha	lt unless the dship other the requesting the state of the	than this applicant than this applicant for interplaced a use variant for the results.	e is g cation	ranted. Also state any efforts you
In pub	essary hardship w nade to alleviate t the alternative lic utility, ha	ill resu he hard e to i as app ts tha	lt unless the dship other the requesting the state of the	than this applicant than this applicant for interplaced a use variant for the results.	e is g cation	ranted. Also state any efforts you ation, Cellular One, as a under the Public Necessit
In pub	essary hardship w nade to alleviate t the alternative lic utility, handards and mee	ill resu he hard e to i as app ts tha	lt unless the dship other the requesting the state of the	than this applicant than this applicant for interplaced a use variant for the results.	e is g cation	ranted. Also state any efforts you ation, Cellular One, as a under the Public Necessit
In pub	essary hardship w nade to alleviate t the alternative lic utility, handards and mee	ill resu he hard e to i as app ts tha	lt unless the dship other the requesting the state of the	than this applicant than this applicant for interplaced a use variant for the results.	e is g cation	ranted. Also state any efforts you ation, Cellular One, as a under the Public Necessit

PLEASE NOTE:

THIS APPLICATION, IF NOT FINALIZED, EXPIRES ONE YEAR FROM THE DATE OF SUBMITTAL.

TOWN OF NEW WINDSOR ZONING BOARD OF APPEALS

APPLICATION FOR VARIANCE - continued

IX. In making its determination, the ZBA shall take into consideration, among other aspects, the benefit to the applicant if the variance is granted as weighed against the detriment to the health, safety and welfare of the neighborhood or community by such grant. Also, whether an undesirable change will be produced in the character of the neighborhood or a detriment to nearby properties will be created by the granting of the area variance; (2) whether the benefit sought by the applicant can be achieved by some other method feasible for the applicant to pursue other than an area variance; (3) whether the requested area variance is substantial; (4) whether the proposed variance will have an adverse effect or impact on the physical or environmental conditions in the neighborhood or district; and (5) whether the alleged difficulty was self-created.

After reading the above paragrap		u believe the Z	BA snowd gra	nt your
application for an Area Variance	e: <u>Please see Cuddy (</u>	Feder LLC	letter	

			· · · · · · · · · · · · · · · · · · ·	
•				
. 				
				
	· · · · · · · · · · · · · · · · · · ·			
				·

PLEASE NOTE:

THIS APPLICATION, IF NOT FINALIZED, EXPIRES ONE YEAR FROM THE DATE OF SUBMITTAL.

OWN OF NEW WINDSOR ZONING BOARD OF APPEALS

APPLICATION FOR VARIANCE - continued

	(a)	Variance requested from New Windsor Zoning Local Law, Section, Supplementary Sign Regulations						
			Requirements	Proposed <u>or Available</u>	Variance <u>Request</u>			
		Sign #1 Sign #2 Sign #3						
		Sign #4						
•	(b)		detail the sign(s) for a gentral or oversized si		ance, and set forth your reason			
٠	(c)	What is tota		f all signs on premises	s including signs on windows,			
XI.		What is tota	l area in square feet o ling and freestanding	f all signs on premises	s including signs on windows,			
ď.		What is tota face of build ERPRETATION	l area in square feet o ling and freestanding	f all signs on premises signs Vindsor Zoning Local	s including signs on windows,			
XI.	INTE	What is tota face of build ERPRETATION Interpretation Section	I area in square feet o ling and freestanding ON: on requested of New V	f all signs on premisessigns Vindsor Zoning Local	s including signs on windows,			
ď.	INTE	What is tota face of build ERPRETATION Interpretation Describe in It is Ce.	l area in square feet o ling and freestanding ON: on requested of New V 48-21-M detail the proposal be	f all signs on premises signs Vindsor Zoning Local fore the Board:	s including signs on windows, ? Law, ication to develop a			
XI.	INTE	What is tota face of build ERPRETATION Interpretation Section Describe in It is Celuireless of an ex	l area in square feet or ding and freestanding on: on requested of New Volume 1 and the proposal be be be be be be be be be be be be be	f all signs on premises signs Vindsor Zoning Local fore the Board: ion that its applicablect property care, which is per	s including signs on windows, ? Law,			

THIS APPLICATION, IF NOT FINALIZED, EXPIRES ONE YEAR FROM THE DATE

OF SUBMITTAL.

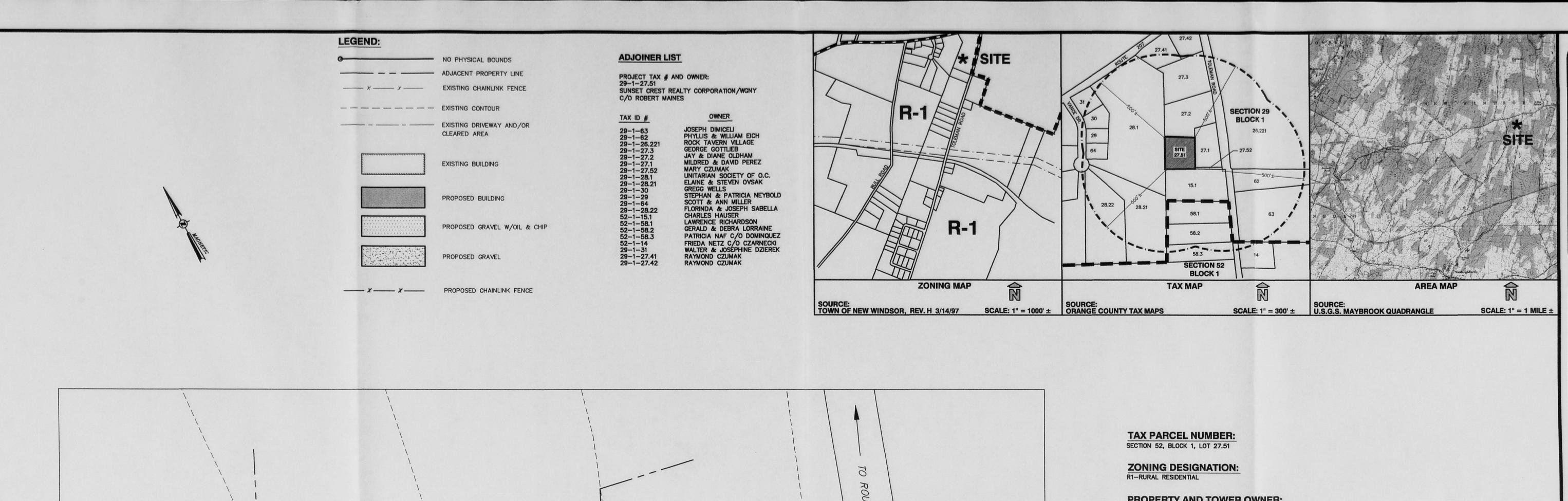
COMPLETE THIS PAGE □

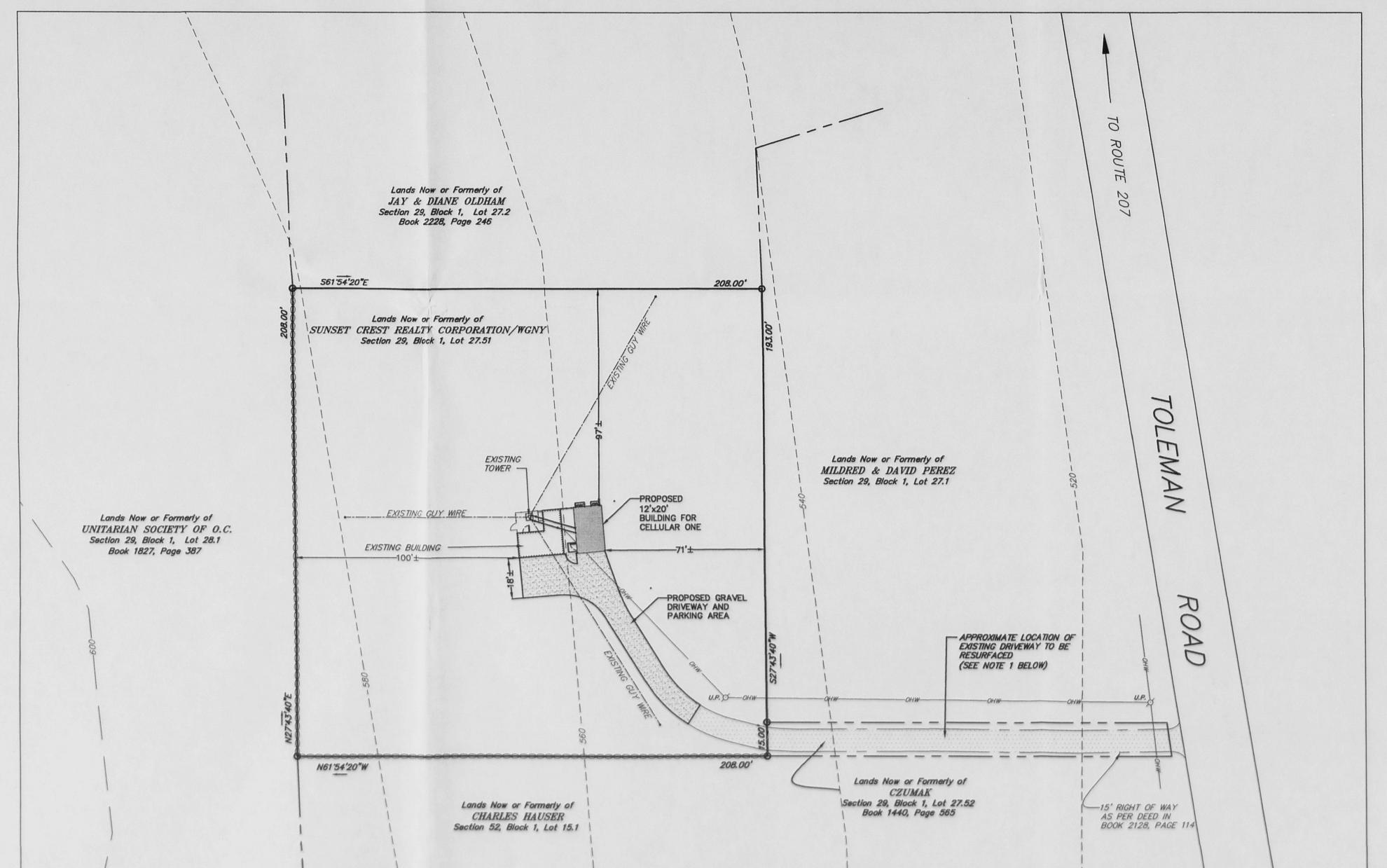
XII. ADDITIONAL COMMENTS:

(a)	Describe any conditions or safeguards you offer to ensure that the quality of the zone and neighboring zones is maintained or upgraded and that the intent and spirit of the New Windsor Zoning Local Law is fostered. (Trees, landscaped, curbs, lighting, paving, fencing, screening, sign limitations, utilities, drainage.)
XIII. ATTA	ACHMENTS REQUIRED:
×	Copy of contract of sale, lease or franchise agreement. Copy of deed and title policy.
A	Copy of site plan or survey showing the size and location of the lot, the location of all buildings, facilities, utilities, access drives, parking areas, trees, landscaping, fencing, screening, signs, curbs, paving and streets within 200 ft. of the lot in question.
	Copies of signs with dimensions and location.
r 💆	Three checks: (each payable to the TOWN OF NEW WINDSOR)
	One in the amount of $\frac{300.00 \text{ or } 500.00}{2}$, (escrow)
	One in the amount of \$ 50.00 or 150.00, (application fee)
~	One in the amount of \$, (Public Hearing List Deposit)
M	Photographs of existing premises from several angles. (IF SUBMITTING DIGITAL PHOTOS PRINTED FROM COMPUTER – PLEASE SUBMIT FOUR(4) SETS OF THE PHOTOS. (PHOTOS IMULATIONS)
XIV. AFFII	DAVIT.
STATE OF N	, , , , , , , , , , , , , , , , , , ,
COLDETY OF) SS.:
COUNTY OF	ORANGE)
contained in this belief. The appli	applicant, being duly sworn, deposes and states that the information, statements and representations application are true and accurate to the best of his/her knowledge or to the best of his/her information and cant further understands and agrees that the Zoning Board of Appeals may take action to rescind any if the conditions or situation presented herein are materially changed.
Sworn to befo	ore me this:
20 00	Owner's Signature (Notarized)
H	PATRICIA SICOLO 20 Public, State of New York PARTICIA SICOLO 20 Public, State of New York PARTICIA SICOLO 20 Public, State of New York PARTICIA SICOLO 20 PROPERTION
Qual Commission	ified in Orange County Expires December 11, 20
	Rain Rain
Signatu	re and Stamp of Notary Applicant's Signature (If not Owner)
PLEASE NO	TE:

THIS APPLICATION, IF NOT FINALIZED, EXPIRES ONE YEAR FROM THE DATE OF SUBMITTAL.

APLICANT/OWNER PROXY STATEMENT (for professional representation)


for submittal to the: TOWN OF NEW WINDSOR ZONING BOARD OF APPEALS


(OWNER)	deposes and says that he resides
at WGNY, 661 Little Britain Road, New (OWNER'S ADDRESS)	Windsor, NY 12553 the County of Orange
and State of New York	and that he is the owner of property tax map
(SecBlock designation number(Sec29_Block1	_Lot) _Lot 27.51) which is the premises described in
the foregoing application and that he authorizes	: ·
Cellular One c/o Kevin Brennan, 1351 (Applicant Name & Address, if different	Route 55, LaGrangeville, N Y 12540 from owner)
The Chazen Companies, 21 Fox Street,	Poughkeepsie, NY 12601
(Name & Address of Professional Repre-	sentative of Owner and/or Applicant)
to make the foregoing application as described th	ercin.
Date: $10/20/03$	** - OPFNATION X Owner's Signature (MUST BE NOTARIZED)
Sworn to before me this:	Owner's Signature (MOST BE NOTARIZED)
20 day of October 2003	Karin T
PATRICIA SICOLO Notary Public, State of New York Reg. # 01Si5053046	Applicant's Signature (If different than owner) (Applicant)
Notary Public, State of New York Reg. # 01Si5053046	ENTER PULLED
Notary Public, State of New York	Applicant's Signature (If different than owner) (Applicant) Representative's Signature (Engineer for Applicant)

** PLEASE NOTE:

ONLY OWNER'S SIGNATURE MUST BE NOTARIZED.

COMPLETE THIS PAGE □

OVERALL SITE PLAN

1. CONTRACTOR TO INSTALL A LEVELING COURSE OF GRAVEL (NYSDOT SUBBASE COURSE TYPE 4), AND THEN RESURFACE WITH OIL AND CHIP.

SCALE: 1"=30"

PROPERTY AND TOWER OWNER:
SUNSET CREST REALITY CORP.
C/O WGNY, BOB MAINES
661 LITTLE BRITTAIN ROAD
NEW WINDSOR, NY 12553

APPLICANT
CELLULAR ONE
1351 ROUTE 55

1351 ROUTE 55
CELLULAR ONE SITE NAME: NEW WINDSOR

APPROXIMATE U.S.G.S. COORDINATES:

LATITUDE: 41° 28' 22.2" N

LONGITUDE: 74° 08' 22.62" W

SITE ADDRESS: 535 TOLEMAN ROAD NEW WINDSOR, NY

DIRECTIONS:

TAKE I-84 WEST TO EXIT 7S. FOLLOW RT. 300 AND TAKE A RIGHT ON RT. 207. FOLLOW RT. 207 AND TAKE A LEFT ON TOLEMAN ROAD. TURN RIGHT INTO DRIVEWAY.

PROPERTY AREA:

1.00 ACRES ±

EXISTING BUILDING COVERAGE:

280 SQ. FT.

PROPOSED BUILDING COVERAGE

240 SQ. FT.

SURVEY NOTES:

1. BASE MAP AND BOUNDARY INFORMATION TAKEN FROM A PLAN ENTITLED "CERTIFICATION SURVEY LANDS OF STEREO NEWBURGH, INC."
PREPARED BY VINCENT J. DOCE LS. AND DATED MAY 20, 1986.

2. EXISTING CONTOURS WERE TAKEN FROM 20' CONTOUR INTERVAL TOPOGRAPHY FROM THE ORANGE COUNTY WATER AUTHORITY DATA SET, DATED 1997.

3. EXISTING ABOVE GROUND FEATURES TAKEN FROM A SITE VISIT CONDUCTED ON 8/7/03 AND NOT BASED ON AN ACCURATE FIELD SURVEY.

DRAWING INDEX				
SHEET #	SHEET NAME			
SP1	OVERALL SITE PLAN			
SP2	SITE PLAN & DETAILS			
SD1	DETAILS			

TOWN OF NEW WINDSOR

OCT 3 1 2003

ENGINEER & PLANNING

TOWN OF NEW WINDSOR PLANNING BOARD APPROVAL

2. CONTRACTOR CANNOT GRADE OUTSIDE OF THE 15' WIDE RIGHT OF WAY DURING DRIVEWAY RESURFACING.

30 0 30

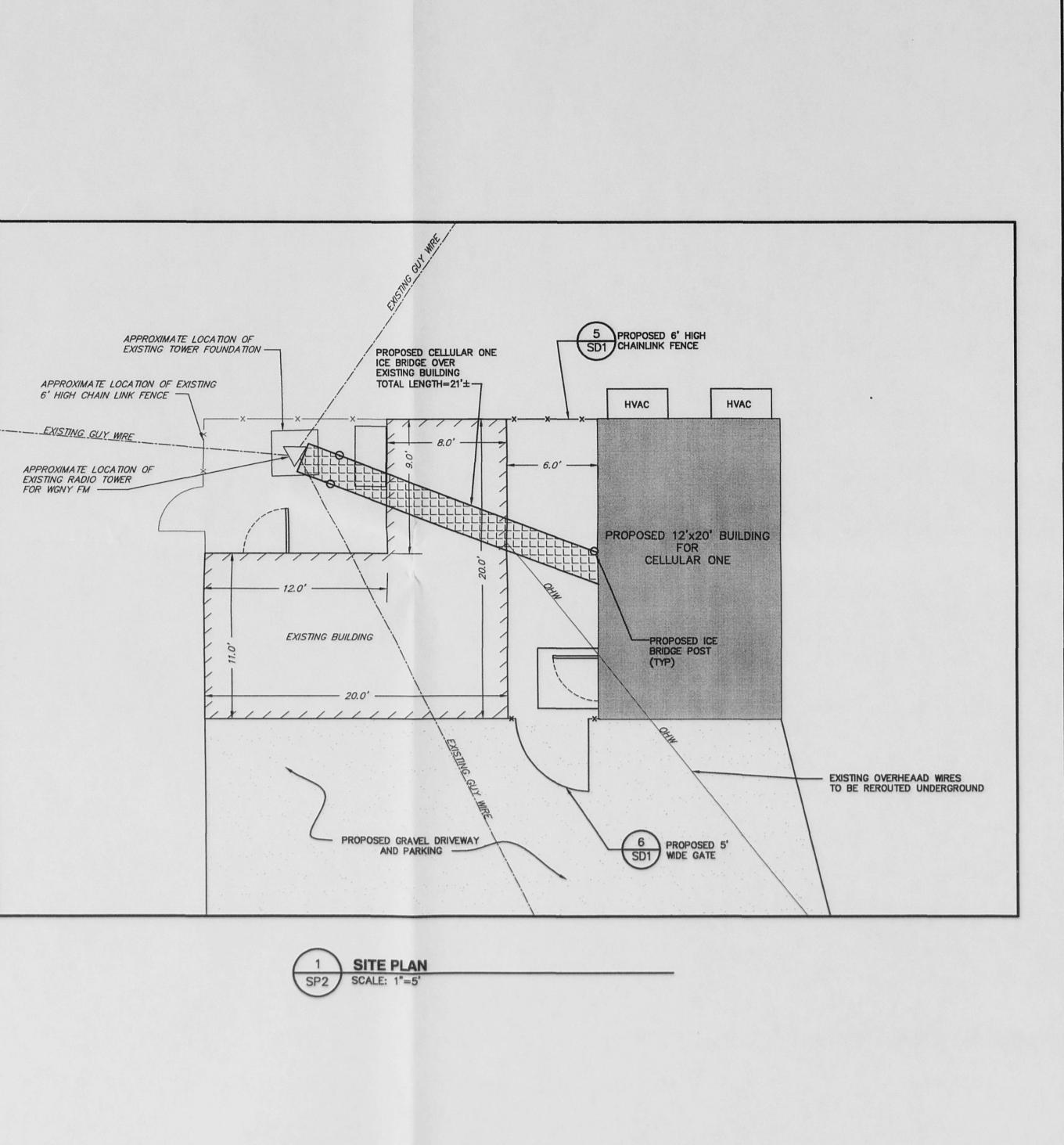
SCALE IN FEET
1"=30'

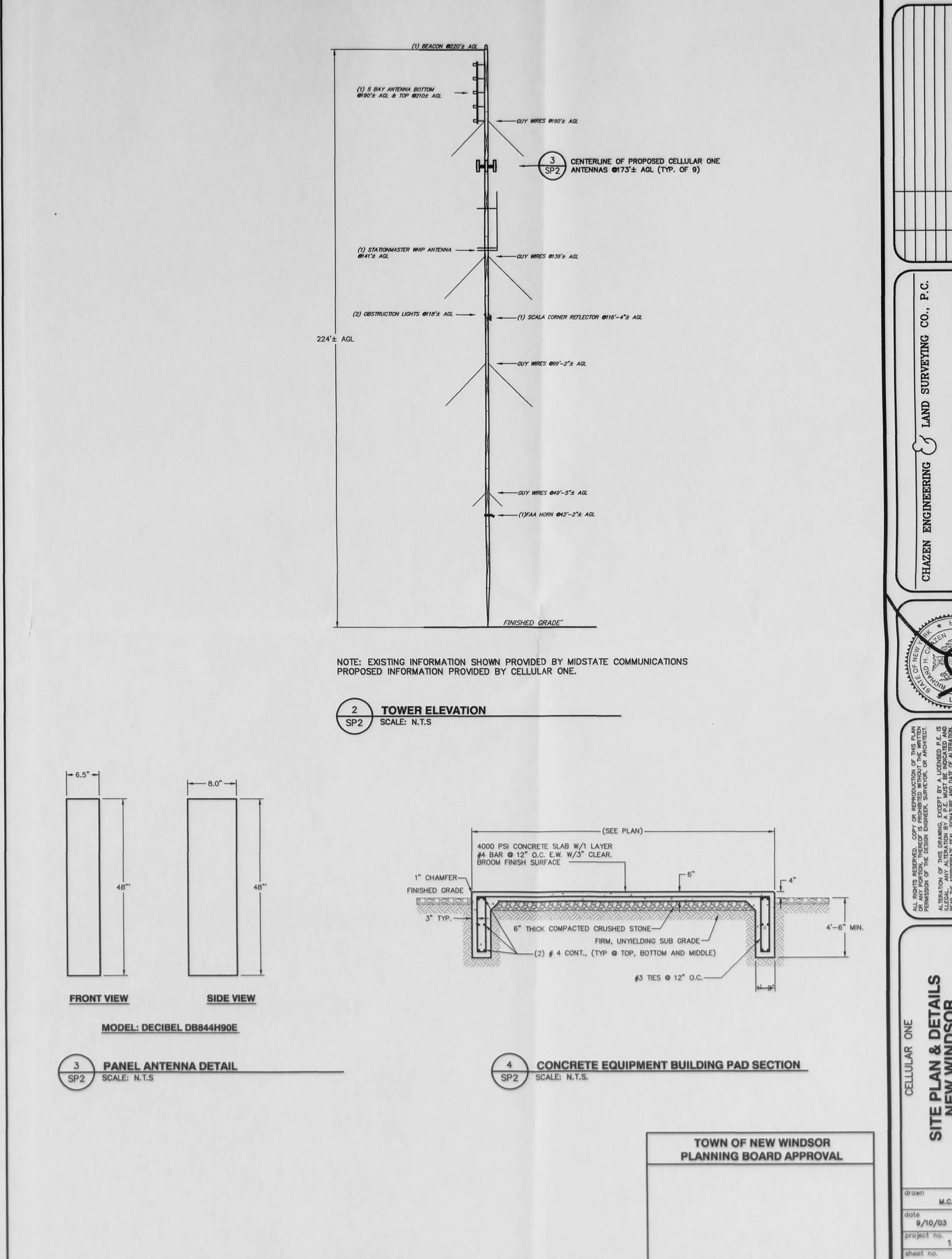
ZONING DRAWINGS - NOT FOR CONSTRUCTION

drawn
M.C. checked

M.C. scale

9/10/03 1*=30'

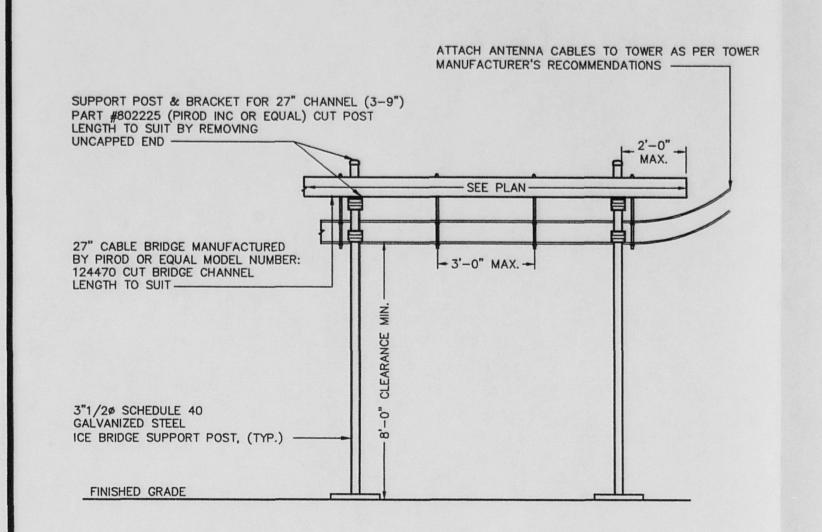

project no.


10381

sheet no.

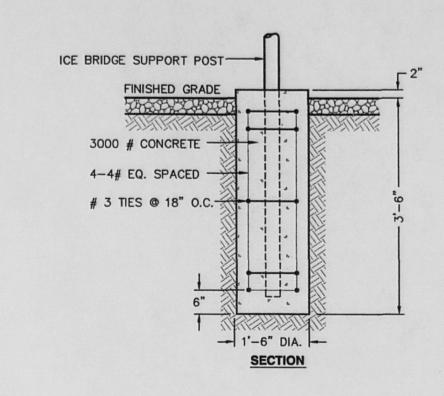
SP1

Drawing Name: X:\1\10300-10400\10381\ENG\DWG\ZD's\SP1.dwg Xref's Attached: X-BASE

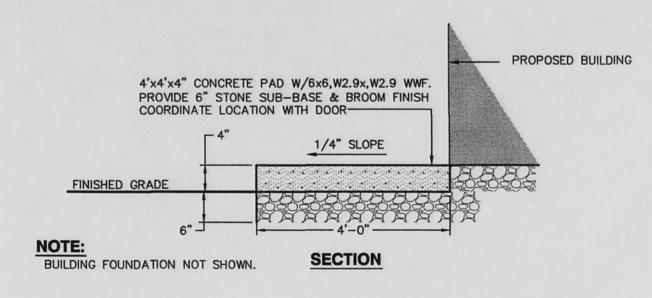


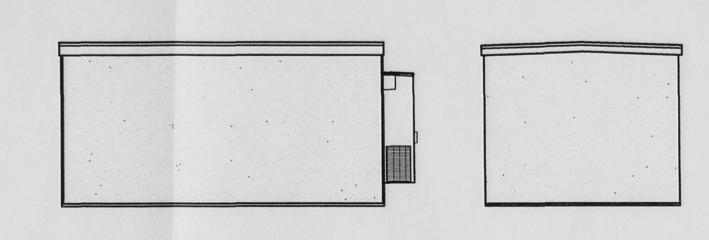
ZONING DRAWINGS - NOT FOR CONSTRUCTION

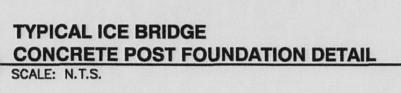
1"=5"


Drawing Name: X:\1\10300-10400\10381\ENG\0WG\ZD's\SP2.dwg Xref's Attached: X-BASE

TYPICAL ICE BRIDGE

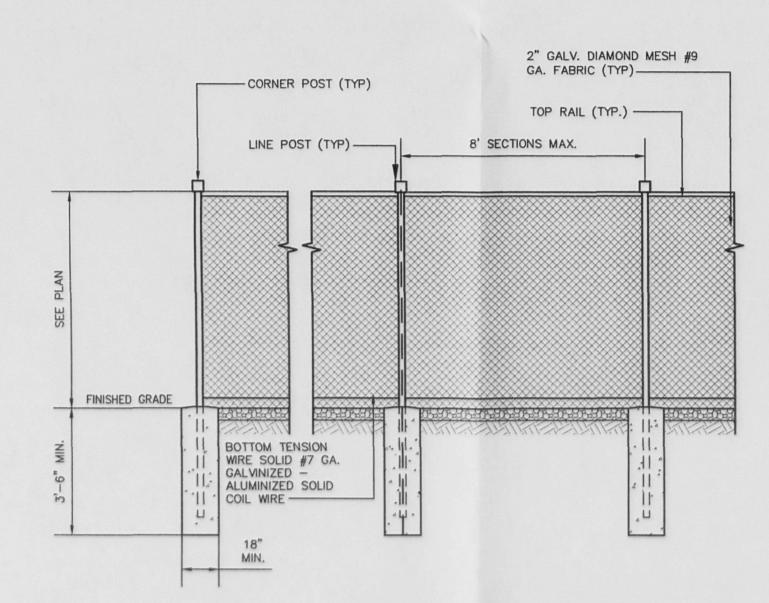

SD1 SCALE: N.T.S.

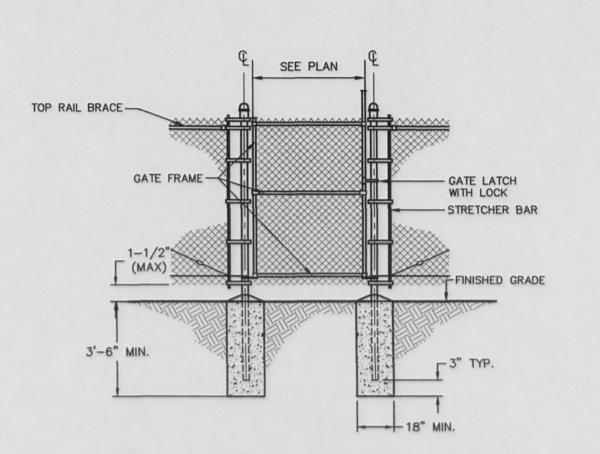

SECTIONAL ELEVATION DETAIL



TYPICAL ICE BRIDGE

SCALE: N.T.S.




3 CONCRETE DOOR SILL DETAIL SCALE: N.T.S.

BUILDING ELEVATIONS TYPICAL 12'x20' EQUIPMENT SHELTER

FRAME WORK SCHEDULE			
LINE POST O.D.	END / CORNER POST O.D.	TOP RAIL & BRACE RAIL	
2"	2"	1 5/8"	
2" 1/2	3"	1 5/8"	
3"	4"	2"	

SD1 SCALE: N.T.S

GATE POST SCHEDULE		NOTE: GATES ARE TO SWING OUTWARD, MAINTAINII
GATE LEAF SIZE	POST O.D.	4" OF CLEARANCE FROM FINISHED GRADE.
UP TO 12'	3"	
12' TO 20'	4"	

6 WIRE SWING GATE, SINGLE
SD1 SCALE: N.T.S

TOWN OF NEW WINDSOR PLANNING BOARD APPROVAL

ZONING DRAWINGS - NOT FOR CONSTRUCTION

9/10/03 AS SHOWN SD1